
VU University Amsterdam
Faculty of Sciences

Department of Computer Sciences

Internet & Web Technology
Master thesis

Dynamic Analysis of Android
Malware

Victor van der Veen

supervisors
prof. dr. ir. Herbert Bos
dr. Christian Rossow

August 31, 2013

Abstract

Expecting a shipment of 1 billion Android devices in 2017, cyber criminals
have naturally extended their vicious activities towards Google’s mobile oper-
ating system: threat researchers are reporting an alarming increase of detected
Android malware from 2012 to 2013. In order to have some control over the es-
timated 700 new Android applications that are being released every day, there is
need for a form of automated analysis to quickly detect and isolate new malware
instances.

We present the TraceDroid Analysis Platform, a scalable, automated
framework for dynamic analysis of Android applications to detect suspicious,
possibly malicious apps using a comprehensive method tracing scheme dubbed
TraceDroid. We provide means to aid further post-analysis on suspects to
allow malware researchers to fully understand their behavior and ultimately
label them as malicious or benign. Our framework can therefore aid and direct
scarce analysis resources towards applications that have the greatest potential
of being malicious.

We show that TraceDroid is almost 50% faster than Android’s original
profiler implementation while revealing much more detail about the app’s ex-
ecution. This makes it a perfect tool not only for malware analysts, but also
for app developers and reverse engineers. For a random set of 35 both benign
and malicious samples, the stimulation engine of our TraceDroid Analysis
Platform achieves an average code coverage of 33.6% which is even more than
when they are stimulated manually (32.9%).

Contents

1 Introduction 7

2 Background Information 9
2.1 Android System Architecture . 9

2.1.1 Linux kernel . 9
2.1.2 Libraries . 10
2.1.3 Android runtime . 10
2.1.4 Application framework . 11
2.1.5 Applications . 12

2.2 Dalvik Virtual Machine . 12
2.2.1 Hardware constraints . 12
2.2.2 Bytecode . 13

2.3 Apps . 13
2.3.1 Application components 14
2.3.2 Manifest . 15
2.3.3 Native code . 15
2.3.4 Distribution . 16

2.4 Malware . 16
2.4.1 Types of malware . 16
2.4.2 Malware distribution . 17
2.4.3 Malware data sets . 18

3 Design 19
3.1 Design . 19

3.1.1 What to collect . 19
3.1.2 Framework design . 20
3.1.3 Native code . 21

3.2 Specification . 21
3.2.1 Specification . 21
3.2.2 Existing solutions . 23

4 Implementation 24
4.1 TraceDroid . 24

4.1.1 Implementation . 25
4.1.2 Andrubis integration . 30
4.1.3 Discussion . 32

4.2 Android Framework Modifications 32
4.2.1 killProcess() . 32

1

4.2.2 Making am profile stop blocking 32
4.2.3 Timeout values . 35

4.3 Analysis Framework . 35
4.3.1 Static analysis . 35
4.3.2 Dynamic analysis . 35
4.3.3 Post processing . 36
4.3.4 Inspecting TraceDroid output 38

4.4 Bytecode Weaving . 39
4.4.1 AOP: Aspect Oriented Programming 40
4.4.2 Advantages and drawbacks of bytecode weaving 42

5 Evaluation 45
5.1 Benchmarking TraceDroid . 45

5.1.1 Benchmark setup . 45
5.1.2 Benchmark results . 46

5.2 Benchmarking TraceDroid + Andrubis 48
5.2.1 Andrubis background . 48
5.2.2 Benchmark results . 49

5.3 Coverage . 51
5.3.1 Compared to manual analysis 51
5.3.2 Breakdown of simulation actions 54
5.3.3 Coverages results . 55

5.4 Failures . 58
5.5 Dissecting Malware . 60

5.5.1 ZitMo: ZeuS in the Mobile 61
5.5.2 Dissecting a1593777ac80b828d2d520d24809829d 61
5.5.3 Discussion . 66

6 Related Work 68
6.1 Background and Surveys . 68
6.2 Systematization of Knowledge . 69

6.2.1 Attributes . 69
6.2.2 Classification . 71
6.2.3 Overview of (proposed) frameworks 72

6.3 Dynamic Analysis Platforms . 78
6.3.1 AASandbox . 78
6.3.2 TaintDroid . 78
6.3.3 DroidBox . 78
6.3.4 Bouncer . 79
6.3.5 Andrubis . 80
6.3.6 DroidScope . 80
6.3.7 AppsPlayground . 80
6.3.8 Mobile-Sandbox . 80
6.3.9 CopperDroid . 81
6.3.10 Closed frameworks . 81

2

7 Conclusions 82
7.1 Future Work . 82

7.1.1 TraceDroid . 82
7.1.2 TraceDroid Analysis Platform 85
7.1.3 Other research directions 86

7.2 Conclusions . 87
7.2.1 TraceDroid . 87
7.2.2 TraceDroid Analysis Platform 87

Appendices 96

A Sample Set 97

B Availability of Related Work 106

3

List of Figures

2.1 Android low level system architecture 10
2.2 ANR dialog . 11
2.3 Android application build process 13

3.1 Design for Android dynamic analysis platform 20

4.1 Example stack layout . 27
4.2 Android source code control flow diagram for disabling method

tracing . 34
4.3 Weave process . 42

5.1 Benchmark results . 47
5.2 CDF for TraceDroid coverage results 56
5.3 Code coverage breakdown per simulation 57
5.4 ZitMo . 62
5.5 Call graph for ZitMo . 67

4

List of Tables

4.1 Possible race condition in LOGD TRACE 28
4.2 Description of default actions simulated during analysis 36
4.3 Excluded libraries for naive code coverage computation 37
4.4 Description of different feature sets extracted 38
4.5 Common fields for Function and Constructor objects 38
4.6 Variables for direct access . 39
4.7 Options for generate callgraph() 39

5.1 Benchmark results (all times in ms) 47
5.2 Overview of operations detected by Andrubis 48
5.3 Andrubis similarities for different runtime values (without rep-

etition) . 49
5.4 Andrubis coverage results for different runtime values 50
5.5 Andrubis similarities for different runtime values (equal data

field required) . 50
5.6 Coverage results for benign and malicious samples 52
5.7 Andrubis breakdown . 54
5.8 TraceDroid breakdown . 55
5.9 Code coverage results . 56
5.10 Classification of detected failures 58

6.1 Overview of (proposed) frameworks 73

A.1 Benign sample set . 97
A.2 Malicious sample set . 101

B.1 Availability of research frameworks 106

5

List of Listings

3.1 Source code for a very simple Android app 22
3.2 Desired trace output . 23
4.1 Method trace for thrown exceptions 29
4.2 Actual trace output . 31
4.3 Enabling method tracing using AOP 40
4.4 Minimal method tracing aspect 41
4.5 Trace aspect output . 43
5.1 Stack trace with added method resolution for the unknown bug 60
5.2 Generating a feature set for ZitMo 62
5.3 getResponseCode() invocation 63
5.4 Retrieving URL parameters . 63
5.5 Domain name deobfuscation . 63
5.6 Method trace for GetLastSms() 64
5.7 Method trace for AlternativeControl() 64
5.8 Manual dynamic analysis . 65
5.9 Method trace for AlternativeControl() 65
7.1 Android application using reflection 83

6

Chapter 1

Introduction

With an estimated market share of 70% to 80%, Android has become the most
popular operating system for smartphones and tablets [12, 43]. Expecting a
shipment of 1 billion Android devices in 2017 and with over 50 billion total app
downloads since the first Android phone was released in 2008, cyber criminals
naturally expanded their vicious activities towards Google’s mobile platform.
Mobile threat researchers indeed recognize an alarming increase of Android mal-
ware from 2012 to 2013 and estimate that the number of detected malicious apps
is now in the range of 120,000 to 718,000 [1, 30, 38, 65]. In the summer of 2012,
the sophisticated Eurograbber attack showed that mobile malware may be a very
lucrative business by stealing an estimated €36,000,000 from bank customers in
Italy, Germany, Spain and the Netherlands [39].

Android’s open design allows users to install applications that do not nec-
essarily originate from the Google Play Store. With over 1 million apps avail-
able for download via Google’s official channel [68], and possibly another million
spread among third-party app stores, we can estimate that there are over 20,000
new applications being released every month. This requires malware researchers
and app store administrators to have access to a scalable solution for quickly
analyzing new apps and identifying and isolating malicious applications.

Google reacted to the growing interest of miscreants in Android by revealing
Bouncer in February 2012, a service that checks apps submitted to the Google
Play Store for malware [44]. However, research has shown that Bouncer’s
detection rate is still fairly low and that it can easily be bypassed [37, 48]. A
large body of similar research on Android malware has been proposed, but none
of them provide a comprehensive solution to obtain a thorough understanding
of unknown applications: Bläsing et al. and Reina et al. limit their research to
system call analysis [7, 58], Enck et al. focuses on taint tracking [26], Rastogi
et al. and Spreitzenbarth et al. track only specific API invocations [56, 64], and
work done by Yan and Yin is bound to use an emulator [72].

In this work, we present a scalable dynamic analysis platform for Android
applications to detect suspicious, possibly malicious applications. We provide
means to aid further post-analysis on these suspects to allow malware researchers
to fully understand their behavior. By using dynamic analysis, we have the
advantage that our results are not hindered by obfuscation techniques used by
the application, unlike static analysis approaches. Running the application in a
sandboxed environment allows us to keep track of an app’s entire control flow

7

without having to apply complex decompilation and deobfuscation techniques.
We introduce a modified Android OS dubbed TraceDroid to generate

comprehensive method traces for a given Android application. In addition, we
present the TraceDroid Analysis Platform (TAP) that automatically ex-
ecutes and stimulates unknown applications within TraceDroid. We provide
a number of plug-ins for TAP that perform post-analysis on TraceDroid’s
output, including generating a fingerprint of an app’s execution trace as well
as computing the amount of code covered during dynamic stimulation. More-
over, results of these plug-ins may be used by a machine learning algorithm to
classify and detect malware or to evaluate the effectiveness of TAP. Finally,
TraceDroid has been integrated into Andrubis, a popular online platform
for analysis of Android applications. We analyzed numerous of both benign and
malicious applications to ensure TraceDroid and TAP do not interfere an
app’s normal execution behavior.

To summarize, we present the following contributions.

• We present TraceDroid, a modified version of Android’s Dalvik Virtual
Machine that provides comprehensive method trace output. We show that
TraceDroid outperforms Android’s existing method tracer in terms of
performance, while revealing great detail on an app’s behavior, including
invoked Java methods with parameter resolution and return values as well
as textual representations of objects used during the app’s runtime.

• We introduce the TraceDroid Analysis Platform (TAP), a frame-
work that uses TraceDroid to perform dynamic analysis of unknown
Android applications. TAP aims to maximize the observed malware be-
havior by simulating certain events and includes a number of plug-ins
to ease post-analysis of unknown applications, as well as to measure the
effectiveness of the executed dynamic analysis.

• We provide a detailed overview of existing work on the field of Android
security: using a number of characteristics, we classify research efforts into
7 categories.

This document is further outlined as follows. In Chapter 2, we provide an
introduction into the Android architecture and outline the techniques used by
mobile malware authors. In Chapter 3, we define the scope of our work and pro-
vide a specification of our TraceDroid implementation combined with desired
output. The implementation notes of TraceDroid and TAP are discussed
in Chapter 4. We evaluate both implementations in Chapter 5. In Chapter 6,
we discuss related research efforts. We look closely at related work that uses
dynamic analysis, but also outline a systematization of knowledge wherein we
classify known Android security research efforts. Finally, in Chapter 7, we
propose a number of future research directions and possible extensions to our
implementations and conclude our work.

8

Chapter 2

Background Information

Before we discuss the details of our analysis framework, it is important to under-
stand how Android and Android applications work. In this chapter, we provide
a short introduction into the Android architecture.

We start with a high level overview of the Android system architecture in
Section 2.1. In this section, we describe the implementation design of Android
and discuss its various component layers.

Since a major part of our contribution focuses on modifying the virtual
machine that is responsible for executing Android applications, we discuss this
layer in more detail in Section 2.2.

An overview of the core components found in Android applications is out-
lined in Section 2.3. This section discusses activities, services, receivers, and
intents, the building blocks of Android applications.

Finally, in Section 2.4, we briefly discuss how Android malware takes advan-
tage of the Android platform.

2.1 Android System Architecture
The Android software stack is illustrated in Figure 2.11. In this figure, green
items are components written in native code (C/C++), while blue items are
Java components interpreted and executed by the Dalvik Virtual Machine. The
bottom red layer represents the Linux kernel components and runs in kernel
space.

In the following subsections, we briefly discuss the various abstraction layers
using a bottom-up approach. For a more detailed overview, we refer to existing
studies [9, 22].

2.1.1 Linux kernel
Android uses a specialized version of the Linux Kernel with a few special ad-
ditions. These include wakelocks (mechanisms to indicate that apps need to
have the device stay on), a memory management system that is more aggres-
sive in preserving memory, the Binder IPC driver, and other features that are
important for a mobile embedded platform like Android.

1via: http://en.wikipedia.org/wiki/Android_(operating_system)#Linux

9

http://en.wikipedia.org/wiki/Android_(operating_system)#Linux

Figure 2.1: Android low level system architecture

2.1.2 Libraries
A set of native C/C++ libraries is exposed to the Application Framework and An-
droid Runtime via the Libraries component. These are mostly external libraries
with only very minor modifications such as OpenSSL2, WebKit3 and bzip24.
The essential C libraries, codename Bionic, were ported from BSD’s libc and
were rewritten to support ARM hardware and Android’s own implementation
of pthreads based on Linux futexes.

2.1.3 Android runtime
The middleware component called Android Runtime consists of the Dalvik Vir-
tual Machine (Dalvik VM or DVM) and a set of Core Libraries. The Dalvik
VM is responsible for the execution of applications that are written in the Java
programming language and is discussed in more detail in Section 2.2. The core
libraries are an implementation of general purpose APIs and can be used by the
applications executed by the Dalvik VM. Android distinguishes two categories
of core libraries.

• Dalvik VM-specific libraries.
• Java programming language interoperability libraries.
2http://www.openssl.org
3http://www.webkit.org
4http://www.bzip.org

10

http://www.openssl.org
http://www.webkit.org
http://www.bzip.org

The first set allow in processing or modifying VM-specific information and is
mainly used when bytecode needs to be loaded into memory. The second cate-
gory provides the familiar environment for Java programmers and comes from
Apache’s Harmony5. It implements most of the popular Java packages such as
java.lang and java.util.

2.1.4 Application framework
The Application Framework provides high level building blocks to applications
in the form of various android.* packages. Most components in this layer are
implemented as applications and run as background processes on the device.
Some components are responsible for managing basic phone functions like re-
ceiving phone calls or text messages or monitoring power usage. A couple of
components deserve a bit more attention:

Activity Manager The Activity Manager (AM) is a process-like manager that keeps track
of active applications. It is responsible for killing background processes if
the device is running out of memory. It also has the capability to detect
unresponsive applications when an app does not respond to an input event
within 5 seconds (such as a key press or screen touch). It then prompts
an Application Not Responding (ANR) dialog (shown in Figure 2.2).

Figure 2.2: ANR dialog

Content Providers Content Providers are one of the primary building blocks for Android
applications. They are used to share data between multiple applications.
Contact list data, for example, can be accessed by multiple applications
and must thus be stored in a content provider.

Telephony Manager The Telephony Manager provides access to information about the tele-
phony services on the device such as the phone’s unique device identifier
(IMEI) or the current cell location. It is also responsible for managing
phone calls.

Location Manager The Location Manager provides access to the system location services
which allow applications to obtain periodic updates of the device’s geo-
graphical location by using the device’s GPS sensor.

5http://harmony.apache.org

11

http://harmony.apache.org

2.1.5 Applications
Applications or apps are built on top of the Application Framework and are
responsible for the interaction between end-users and the device. It is unlikely
that an average user ever has to deal with components not in this layer. Pre-
installed applications offer a number of basic tasks a user would like to perform
(making phone calls, browsing the web, reading e-mail, etc.), but users are free
to install third-party applications to use other features (e.g., play games, watch
videos, read news, use GPS navigation, etc.). We discuss Android applications
in more detail in Section 2.3.

2.2 Dalvik Virtual Machine
Android’s design encourages software developers to write applications that offer
users extra functionality. Google decided to use Java as the platform’s main
programming language as it is one of the most popular languages: Java has
been the number one programming language almost continuously over the last
decade6, and a large number of development tools are available for it (e.g.,
Eclipse7 and NetBeans8). Java source code is normally compiled to and dis-
tributed as Java bytecode which, at runtime, is interpreted and executed by a
Virtual Machine (VM). For Android, however, Google decided to use a different
bytecode and VM format named Dalvik. During the compilation process of
Android applications, Java bytecode is converted to Dalvik bytecode which can
later be executed by the specially designed Dalvik VM.

Since a large part of our contributions involve modifying the Dalvik VM, we
now discuss it in a bit more detail.

2.2.1 Hardware constraints
The Android platform was specifically designed to run on mobile devices and
thus comes has to overcome some challenging hardware restrictions when com-
pared to regular desktop operating systems: mobile phones are limited in size
and are powered by only a battery. Due to this mobile character, initial de-
vices contained a relatively slow CPU and had only little amount of RAM left
once the system was booted. Despite these ancient specifications, the Android
platform does rely on modern OS principles: each application is supposed to
run in its own process and has its own memory space which means that each
application should run in its own VM.

It was argued that the hardware constraints, made it hard to fulfill the
security requirements using existing Java virtual machines [8]. To overcome
these issues, Android uses the Dalvik VM. A special instance of the DVM is
started at boot time which will become the parent of all future VMs. This VM
is called the Zygote process and preloads and preinitializes all system classes (the
core libraries discussed in Section 2.1.3). Once started, it listens on a socket
and fork()s on command whenever a new application start is requested. Using
fork() instead of starting a new VM from scratch increases the speedup time

6http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
7http://www.eclipse.org
8http://www.netbeans.org

12

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.eclipse.org
http://www.netbeans.org

and by sharing the memory pages that contain the preloaded system classes,
Android also reduces the memory footprint for running applications.

Furthermore, as opposed to regular stack-based virtual machines — a mech-
anism that can be ported to any platform — the DVM is register-based and is
designed to specifically run on ARM processors. This allowed the VM develop-
ers to add more speed optimizations.

2.2.2 Bytecode
The bytecode interpreted by the DVM is so-called DEX bytecode (Dalvik EX-
ecutable code). DEX code is obtained by converting Java bytecode using the
dx tool. The main difference between the DEX file format and Java bytecode
is that all code is repacked into one output file (classes.dex), while removing
duplicate function signatures, string values and code blocks. Naturally, this
results in the use of more pointers within DEX bytecode than in Java .class
files. In general, however, .dex files are about 5% smaller than their counter-
part, compressed .jar files.

It is worth mentioning that during the installation of an Android application,
the included classes.dex file is verified and optimized by the OS. Verification
is done to reduce runtime bugs and to make sure that the program cannot
misbehave. Optimization involves static linking, inlining of special (native)
methods (e.g. calls to equals()), and pruning empty methods.

2.3 Apps
Android applications are distributed as Android Package (APK) files. APK
files are signed ZIP files that contain the app’s bytecode along with all its
data, resources, third-party libraries and a manifest file that describes the app’s
capabilities. Figure 2.3 shows the simplified process of how Java source code
projects are translated to APK files.

Figure 2.3: Android application build process

To improve security, apps run in a sandboxed environment. During installa-
tion, applications receive a unique Linux user ID from the Android OS. Permis-
sions for files in an application are then set so that only the application itself has
access to them. Additionally, when started, each application is granted its own
VM which means that code is isolated from other applications. It is stated by
the Android documentation that this way, Android implements the principle of

13

least privilege as each application has access to only the components it requires
to do its work9.

2.3.1 Application components
We now outline a number of core application components that are used to build
Android apps. For more information on Android application fundamentals, we
refer to the official documentation10.

Activities

An activity represents a single screen with a particular user interface. Apps are
likely to have a number of activities, each with a different purpose. A music
player, for instance, might have one activity that shows a list of available albums
and another activity to show the song that is currently be played with buttons
to pause, enable shuffle, or fast forward. Each activity is independent of the
others and, if allowed by the app, can be started by other applications. An
e-mail client, for example, might have the possibility to start the music app’s
play activity to start playback of a received audio file.

Services

Services are components that run in the background to perform long-running
operations and do not provide a user interface. The music application, for
example, will have a music service that is responsible for playing music in the
background while the user is in a different application. Services can be started
by other components of the app such as an activity or a broadcast receiver.

Content providers

Content providers are used to share data between multiple applications. They
manage a shared set of application data. Contact information, for example,
is stored in a content provider so that other applications can query it when
necessary. A music player may use a content provider to store information
about the current song being played, which could then be used by a social
media app to update a user’s ‘current listening’ status.

Broadcast receivers

A broadcast receiver listens for specific system-wide broadcast announcements
and has the possibility to react upon these. Most broadcasts are initiated from
the system and announce that, for example, the system completed the boot
procedure, the battery is low, or an incoming SMS text message was received.
Broadcast receivers do not have a user interface and are generally used to act as
a gateway to other components. They might, for example, initiate a background
service to perform some work based on a specific event.

Two types of broadcasts are distinguished: non-ordered and ordered. Non-
ordered broadcast are sent to all interested receivers at the same time. This
means that a receiver cannot interfere with other receivers. An example of such

9http://developer.android.com
10http://developer.android.com/guide/components/fundamentals.html

14

http://developer.android.com
http://developer.android.com/guide/components/fundamentals.html

broadcast is the battery low announcement. Ordered broadcasts, on the other
hand, are first passed to the receiver with the highest priority, before being
forwarded to the receiver with the second highest priority, etc. An example for
this is the incoming SMS text message announcement.

Broadcast receivers that receive ordered broadcasts can, when done process-
ing the announcement, decide to abort the broadcast so that it is not forwarded
to other receivers. In the example of incoming text messages, this allows vendors
to develop an alternative text message manager that can disable the existing
messaging application by simply using a higher priority receiver and aborting
the broadcast once it finished handling the incoming message.

Intents

Activities, services and broadcast receivers are activated by an asynchronous
message called an intent. For activities and services, intents define an action
that should be performed (e.g., view or send). They may include additional
data that specifies what to act on. A music player application, for example, may
send a view intent to a browser component to open a webpage with information
on the currently selected artist.

For broadcast receivers, the intent simply defines the current announcement
that is being broadcast. For an incoming SMS text message, the additional data
field will contain the content of the message and the sender’s phone number.

2.3.2 Manifest
Each Android application comes with an AndroidManifest.xml file that in-
forms the system about the app’s components. Activities and services that are
not declared in the manifest can never run. Broadcast receivers, however, can
be either declared in the manifest or may be registered dynamically via the
registerReceiver() method. The manifest also specifies application require-
ments such as special hardware requirements (e.g., having a camera or GPS
sensor), or the minimal API version necessary to run this app.

In order to access protected components (e.g., camera access, or access to the
user’s contact list), an application needs to be granted permission. All necessary
permissions must be defined in the app’s AndroidManifest.xml. This way,
during installation, the Android OS can prompt the user with an overview of
used permissions after which a user explicitly has to grant the app access to use
these components.

Within the OS, protected components are element of a unique Linux group
ID. By granting an app permissions, it’s VM becomes a member of the accom-
panying groups and can thus access the restricted components.

2.3.3 Native code
It may be helpful for certain types of applications to use native code languages
like C and C++ so that they can reuse existing code libraries written in these
languages. Typical good candidates for native code usage are self-contained,
CPU intensive operations such as signal processing, game engines, and so on.
Unlike Java bytecode, native code runs directly on the processor and is thus not
interpreted by the Dalvik VM.

15

2.3.4 Distribution
Android users are free to install any (third-party) application via the Google
Play Store (previously known as the Android Market). Google Play is an online
application distribution platform where users can download and install free or
paid applications from various developers (including Google self). To protect
the Play Store from malicious applications, Google uses an in-house developed
automated anti-virus system named Google Bouncer (discussed in more detail
in Chapter 6).

Users have the possibility to install applications from other sources than
Google Play. For this, a user must enable the unknown sources option in the
device’s settings overview and explicitly accepts the risks of doing so. By using
external installation sources, users can install APK files downloaded from the
web directly, or choose to use third-party markets. These third-party markets
sometimes offer a specialized type of applications, such as MiKandi’s Adult app
store11, or target users from specific countries, like Chinese app stores Anzhi12

and Xiaomi13 (a popular Chinese phone manufacturer).

2.4 Malware
Recent reports focusing on mobile malware trends estimate that the number of
malicious Android apps is now in the range of 120,000 to 718,000 [1, 30, 38, 65].
In this section, we take a closer look at mobile malware characteristics, how they
are distributed and what data sets are publicly available for malware researchers.

2.4.1 Types of malware
The majority of Android malware can be categorized in two types, both using
social engineering to trick users into installing the malicious software.

Fake install/SMS trojan The majority of Android malware is classified as
fake installers or SMS trojans. These apps pretend to be an installer for le-
gitimate software and trick users into installing them on their devices. When
executed, the app may display a service agreement and, once the user has agreed,
sends premium rated text messages. The promised functionality is almost never
available. Variants include repackaged applications that provide the same func-
tionality as the original — often paid — app, but have additional code to secretly
send SMS messages in the background .

SMS trojans are relatively easy to implement: only a single main activity
with a button that initiates the sending of an SMS message when clicked is
required. It is estimated that on average, each deployed sample generates an
immediate profit of around $10 USD [38]. This type of attack is also referred to
as toll fraud. High profit and easy manufacturing make toll fraud apps popular
among malware authors.

11http://www.mikandi.com
12http://www.anzhi.com
13http://app.xiaomi.com

16

http://www.mikandi.com
http://www.anzhi.com
http://app.xiaomi.com

Spyware/Botnet Another observed type of Android malware is classified as
spyware and has capabilities to forward private data to a remote server. In a
more complex form, the malware could also receive commands from the server
to start specific activities in which case it is part of a botnet. Spyware is likely
to use some of the components described in Section 2.3.1. Broadcast receivers
are of particular interest as they can be used to secretly intercept and forward
incoming SMS messages to a remote server or to wait for BOOT COMPLETED to
start a background service as soon as the device is started.

In the summer of 2012, the sophisticated Eurograbber attack showed that
these type of malware may be very lucrative by stealing an estimated €36,000,000
from bank customers in Italy, Germany, Spain and the Netherlands [39].

2.4.2 Malware distribution
A problem with third-party marketplaces described in Section 2.3.4, is the lack
of accountability. There are often no entry limitations for mobile app developers
which results in poor and unreliable applications being pushed to these stores
and making it to Android devices. Juniper Networks finds that malicious appli-
cations often originate from these marketplaces, with China (173 stores hosting
some malware) and Russia (132 ‘infected’ stores) being the world’s leading sup-
pliers [38].

One of the issues Android has to deal with in respect to malware distribution
is the loose management of the devices. Over the past few years, Android
versions have become fragmented, with only 6.5% of all devices running the
latest Android version 4.2 (codename Jelly Bean). More than two years after
its first release in February 2011, a majority of Android devices (33.0%) is still
running Android 2.3.3–2.3.7 (codename Gingerbread)14. This fragmentation
makes new security features only available to a small group of users who happen
to use the latest Android release. Any technique invented to prevent malicious
behavior will never reach the majority of Android users, until they buy a new
device.

One of the security enhancements in Android 4.2, for example, is the more
control of premium SMS feature15. This feature notifies the user when an
application tries to send an SMS message that might cause additional charges.
This feature would prevent a large portion of the previously discussed SMS
trojans, but is unfortunately not attainable for the majority of Android users.

New Android releases also come with bugfixes for core components to pre-
vent against arbitrary code execution exploits. Android versions prior to 2.3.7
are especially vulnerable to these root exploits (examples include rage against
the cage16, exploid17 and zergRush18). While these exploits were originally de-
veloped to overcome limitations that carriers and hardware manufactures put on
some devices, they have also been used by malware to obtain a higher privilege
level without a user’s consent. This approach allows malware to request only a
few permissions during app installation, but still access the entire system once
the app is started.

14http://developer.android.com/about/dashboards/index.html
15http://source.android.com/devices/tech/security/enhancements.html
16http://dtors.org/2010/08/25/reversing-latest-exploid-release
17http://thesnkchrmr.wordpress.com/2011/03/27/udev-exploit-exploid
18http://github.com/revolutionary/zergRush

17

http://developer.android.com/about/dashboards/index.html
http://source.android.com/devices/tech/security/enhancements.html
http://dtors.org/2010/08/25/reversing-latest-exploid-release
http://thesnkchrmr.wordpress.com/2011/03/27/udev-exploit-exploid
http://github.com/revolutionary/zergRush

2.4.3 Malware data sets
Public access to known Android malware samples is mainly provided via the
Android Malware Genome Project19 and Contagio Mobile20. The malgenome-
project was a result of the work done by Zhou and Jiang [78] and contains over
1200 Android malware samples, classified in 49 malware families and were col-
lected in the period of August 2010 to October 2011. Contagiodump offers an
upload dropbox to share mobile malware samples among security researchers
and currently hosts 114 items.

19http://www.malgenomeproject.org
20http://contagiominidump.blogspot.nl

18

http://www.malgenomeproject.org
http://contagiominidump.blogspot.nl

Chapter 3

Design

In this chapter, we define the scope of our analysis framework as it will be
outlined in this Chapter 4. We do this by first discussing the framework’s
design in Section 3.1, followed by a specification of the method trace component
in Section 3.2.

3.1 Design
In order to implement a framework for automated analysis of Android applica-
tions, we have to come up with a solution for two problems.

1. What kind of information would we would like to collect from the appli-
cation?

2. How do we run the application in a sandboxed environment and let it
execute different control paths to increase the code coverage?

In the following two sections, we first discuss in Section 3.1.1 what kind of
information we like to collect, followed by an overview of the framework’s design
that specifies how applications are sandboxed and simulated in Section 3.1.2.

3.1.1 What to collect
In general, dynamic analysis is used to get an overview of the system calls made
by the targeted application as such overview provides a good insight into the
app’s capabilities. For Android, we would like to do something similar. The
Android app’s life cycle, however, allows us to extend this concept a bit further.

As outlined in Section 2.2, in contrast to regular binaries seen on desktop
PCs, Android applications are Java based. In order to run these apps, the Dalvik
Virtual Machine is responsible for interpreting, translating and executing the
app’s bytecode. This intermediate stationary between application blob and
code execution is a perfect place to implement the core of our dynamic analysis
platform: by installing specific hooks within the bytecode interpreter, we can
display detailed information on an app’s internal process (i.e., its function calls
and return statements) and thus implement our own method tracer dubbed
TraceDroid. In addtion, we can still run target apps while tracing them with
the strace utility to get an exclusive list of system calls.

19

The combination of method and system call traces provides detailed infor-
mation on an app’s internal functioning. It could be used by anti-virus analysts
to reverse engineer suspicious applications and identify malicious behavior. In
addition, software developers could use the extensive method trace output as a
debugging tool.

3.1.2 Framework design
To run applications, we use the Android qemu-based emulator that comes with
the Android Software Development Kit (SDK). Google already made it easy
to deploy a new Android Virtual Device (AVD) and interact with it to trigger
specific simulations (initiating phone calls, receiving text messages, etc.). We de-
cided to base our framework on Android version 2.3.4 (codename Gingerbread)
as this is currently still on of the most distributed Android versions1

We decided to build a Python based framework that accepts an APK file as
input and outputs a log directory that holds the dynamic analysis results. The
conceptual design for this framework is illustrated in Figure 3.1.

Figure 3.1: Design for Android dynamic analysis platform

As illustrated in Figure 3.1, the app will be installed and executed in a
modified Android OS that runs on top of qemu. The OS will have tracing
capabilities added that generates method trace output on a per process, per
thread basis. In addition, we will enable the capture of network traffic at the
level of qemu.

Although the framework focuses on dynamic analysis, some static analysis
is neicessary to understand how to simulate different events. Basically, we need
to parse the app’s AndroidManifest.xml file to get information about the app
such as its package name and the names of the activities and services it comes
with. We make use of the Androguard [20] project to fetch this information.

1http://developer.android.com/about/dashboards/index.html

20

http://developer.android.com/about/dashboards/index.html

The recently discovered OBad malware sample demonstrated that the man-
ifest file could be corrupted and become unreadable by our static analysis
tool [66]. In this event, we still continue dynamic analysis and try to get the
required information in a later stage of the analysis flow.

The framework will accept plug-ins that can act as post processing scripts.
These scripts receive the location of the log output directory containing the
method traces and network traffic capture, as well as the location of the original
input APK and may then use these files to compute more interesting analysis
results.

As the framework will use TraceDroid as its core component to generate
valuable output data, the framework itself is named TraceDroid Analysis
Platform (TAP). In this document, the latter is sometimes shorted to simply
TraceDroid when its clear that we refer to the platform instead of the method
tracer.

3.1.3 Native code
We decided to exclude native code execution from the scope of our work and
will thus not discuss it further in much greater detail. The reasons for doing
so are manifold. First, although Spreitzenbarth et al. find that the number of
applications that use native code is relatively high with 24%, they also conclude
that only 13% of the malicious apps make use of native code [64]. Apps that
make use of native code are thus not necessarily more likely to be malicious.
This observation is probably caused by the fact that essential Android features
are not accessible using native code alone, which is our second argument for not
focusing on it explicitly. Finally, there are already two effective tools to trace
native code: strace for system call tracing and ltrace to keep track of library
invocations. We think that using a combination of these tools provide a detailed
enough output trace to study native code execution.

3.2 Specification
In this section, we establish a soft requirement and desired output overview for
the method tracer, followed by a short discussion on existing solutions and why
they are not sufficient.

3.2.1 Specification
We like TraceDroid to produce readable and easy to understand output files.
Ideally, output shall look similar to the original source files of the analyzed appli-
cation. This is hard to achieve using dynamic analysis alone, as the automated
simulation of events may not be able initiate all possible control flow paths,
resulting in incomplete output. We would also have to consider loop detection
and rewrite for and while statements, something we think is out of scope for
a first version. We decided an overview of all called methods (and API calls in
particular) alone would already be of tremendous value for the analyzer. We
would like to see all the method calls that an app makes, including the value
of the provided parameters and their concluding return statements or thrown

21

exceptions. In the future, we may then add the tracing of field operations on
objects or primitives.

Considering a really simple Android application as depicted in Listing 3.1,
we would like to have output similar to Listing 3.2.

Listing 3.1: Source code for a very simple Android app

(a) MainActivity.java

package com. vvdveen . example1 ;

import android .os. Bundle ;
import android .app. Activity ;

public class MainActivity extends Activity {

/* Entry point */
protected void onCreate (Bundle b) {

super . onCreate (b);

SimpleClass sc = new
SimpleClass ("new class ", 42, 7);

int min = sc.min ();
System .out. println (" minimum : " + min);

int mul = sc.mul ();
System .out. println (" multiplied : " + mul);

}

}

(b) SimpleClass.java

package com. vvdveen . example1 ;

public class SimpleClass {
String name;
int i1 , i2;

public SimpleClass (String name ,
int i1 ,
int i2) {

this.name = name;
this.i1 = i1;
this.i2 = i2;

}

public int min () {
if (i1 < i2) return i1;
else return i2;

}
public int mul () {

return i1 * i2;
}

public String toString () {
return this.name;

}
}

As can be derived from Listing 3.2, we want to display a lot of information
about the objects and packages that are used. This will come in useful when
analyzing large applications that come with many different classes. We also
think that displaying parameters and return values will be of high value for the
analysis results.

To summarize, TraceDroid should fulfill the following requirements:

• Enable or disable method tracing on a per app basis to avoid a bloat of
unrelated trace output for apps running in the background.

• Stick to the bytecode of the target app to avoid a bloat of internal system
library calls (we are not interested in the implementation of, for example,
System.out.println()).

• For each called method, include the name of the class it belongs to.
• For non-static methods, include the .toString() result of the correspond-

ing object.
• Print the provided parameters and return values and Call .toString() if

the value is an object.
• Separate output files per thread to get a better understanding of what is

happening when and where.

22

Listing 3.2: Desired trace output

protected void com. vvdveen . example1 . MainActivity (<this >). onCreate ()
protected void android .app. Activity (<this >). onCreate ()
return
new com. vvdveen . example1 . SimpleClass ((String) "new class ", (int) 42, (int) 7)
return
public int com. vvdveen . example1 . SimpleClass ("new class "). min ()
return (int) 7
public void System .out. println (" minimum : 7")
return
public int com. vvdveen . example1 . SimpleClass ("new class "). mul ()
return (int) 294
public void System .out. println (" multiplied : 294")
return

return

• Include some form of indentation to indicate call depth.
• Add a timestamp to each line.
• Process thrown exceptions correctly (i.e., notice exceptions being for-

warded from children to parents).

3.2.2 Existing solutions
The Android OS and its SDK already provide a method tracing and profiling
solution that collects detailed information on the executed methods during a
profiling session2. Although the output seems to be quite complete already, the
data does not contain parameter and return values. It is also not possible to
start the method tracer right at the start of a new application without modifying
the source of the app. On top of that, the Android method tracer is including
internal system library to system library method calls, something we would like
to omit. Finally, the overhead that is introduced by the Android tracer is quite
big (results in Chapter 5) and we aim to find a more efficient solution.

Another existing solution would be the use of JDWP (Java Debug Wire Pro-
tocol) and a Java debugger (e.g., jdb). For this to work though, we would have
find a way to make target applications debuggable, and script the setting and
unsetting of breakpoints in jdb to still get automated code execution. Using the
Java debugger, however, would be a fairly interesting approach to get even more
information about the app’s internal mechanisms, including field operations.

We decided to extend the existing method tracing and profiling functional-
ity.

2http://developer.android.com/tools/debugging/debugging-tracing.html

23

http://developer.android.com/tools/debugging/debugging-tracing.html

Chapter 4

Implementation

In this chapter, we describe how we implemented our automated framework
for dynamic analysis of Android applications. The implementation notes are
divided into the following sections.

Method tracer The core of our analysis framework is responsible for generat-
ing a complete method trace of the target app. The method tracer was developed
by modifying the Dalvik Virtual Machine and is dubbed TraceDroid. A full
review of the TraceDroid implementation is detailed in Section 4.1. In this
section, we also briefly outline the work done in integrating TraceDroid into
the Andrubis platform.

Android framework Aside from the modifications made to the Dalvik Vir-
tual Machine, a small set of changes to the internal Android framework were
necessary to successfully integrate the new VM into our analysis framework.
These changes are discussed in Section 4.2.

Analysis framework The implementation notes for the TraceDroid Anal-
ysis Platform (TAP) that is responsible for starting automated analysis and
simulating events are outlined in Section 4.3. In this section, we also describe
the post processing plug-ins and the inspect tool that allows easy inspection
of analysis results.

Bytecode weaving An alternative for TraceDroid that uses bytecode weav-
ing was also developed and its techniques are explained in Section 4.4.

4.1 TraceDroid
In this section, we discuss the implementation of a method tracer for the An-
droid operating system by providing a technical analysis of the source code
modifications made to the Dalvik Virtual Machine internals. A benchmark of
the resulting method tracer can be found in Chapter 5.

24

4.1.1 Implementation
By extending the profiling section of the Android Dalvik VM implementation,
we were able to obtain log output similar to our desired output as depicted
in Listing 3.2 on page 23. Most of the work here involved modifying the ex-
isting dvmMethodTraceAdd() function in Profile.c which is called each time
a method is entered or left. This enables us to look up the calling class, the
method name and the parameters for each method that gets executed, as well
as any return value whenever a method returns.

Start tracing

Since we do not want method traces from the entire Android framework, we
need to tell the VM which app to trace. As discussed earlier, each app generally
has its own uid, which is a perfect value to use as a conditional variable. For
this, we modified the Dalvik VM initialization code in two ways.

• The -uid:<uid> option is added to the initialization function of the VM.
When the emulator is started, one can forward this option to the Zy-
gote process (the parent of all VM instances) by providing the -prop
"dalvik.vm.extra-opts=-uid:<uid>" argument. It is important to note
that the Zygote is only started once, and providing the uid parameter is
thus only possible during the boot procedure.
Whenever the Zygote fork()s and gains a new uid, we check whether it
matches the provided uid and enable the method tracer in case it does.
Note that if an application fork()s new processes itself, the uid will re-
main the same. This means that method tracing is enabled automatically
for children created by the application.

• A second check is added just after a new VM is fork()ed and starts its
initialization. We try to read an integer from the file /sdcard/uid. If
this succeeds, and if it matches the uid of the new VM process, we will
enable the method tracer. This mechanism can be used to start method
tracing an app for which we did not know the uid before the emulator
was booted.

The uid of an app can be found by parsing the /data/system/packages.list
file. The method tracer is started by calling dvmMethodTraceStart(), an ex-
isting function which does all the initialization.

We write trace output to /sdcard/. However, since VMs are running as ordi-
nary users, they do not have write access to the /sdcard/ file system by default.
This requires a special permission request in the app’s AndroidManifest.xml.
To make sure that we can always write trace files to /sdcard/, we modified the
initialization code so that new apps are always a member of the WRITE EXTERNAL STORAGE
group.

Profiler control flow

Whenever the original VM’s bytecode interpreter enters of leaves a function, the
methods TRACE METHOD ENTER, TRACE METHOD EXIT and TRACE METHOD UNROLL
(for unrolling exceptions) are called. These functions check for a global boolean
methodTrace.traceEnabled to be true, and if it is, call dvmMethodTraceAdd()
which writes trace data to an output file. To extend the method tracer, we

25

modified the prototypes of these functions so that they expect two extra vari-
ables:

• int type is used to identify the origin of the call to TRACE METHOD *.
We need this to distinguish specific inlined function calls from regular
functions, which we will discuss in more detail later.

• void *options is used to store extra options that we need inside the
method tracer. For entering an inlined function, the function’s parameters
will be stored in this pointer as a u4[4]. For TRACE METHOD EXIT, it will
contain the return value as a JValue pointer and for TRACE METHOD UNROLL,
the thrown exception class is stored in this pointer.

We now describe the control flow inside dvmMethodTraceAdd() whenever a
target function f is entered.

Initialization First, a check is performed to see if the caller of f is a function
from a system library. If this is true, we only continue if f is not a system
library function as well to avoid uninteresting method traces. To distinguish
system library bytecode from target app bytecode, we introduce a new boolean
isSystem in the DvmDex struct which contains additional VM data structures
associated with a DEX file (a filename pointer to the APK or .jar filename
was added as well for debugging purposes). The value of isSystem is set in
dvmJarFileOpen() in JarFile.c whenever the loaded file has a filename that
starts with /system/framework/.

What follows is a sanity check to make sure that we are not already inside
dvmMethodTraceAdd(). This may happen when we call toString() on objects
in a later stage and by doing so we avoid an endless loop. As soon as the test
passes, we set inMethodTraceAdd to true for the current thread.

Depending on the action we found, we now take a different branch in the
tracing code.

Entering a method: handle method() The handle method function is re-
sponsible for generating a function entry method trace line. We start with
generating the prefix of the output line that consists of a timestamp and some
indentation to get readable output. Next, getModifiers() generates a list of
Java modifiers that are applicable to f (final, native, private, . . .). We then
get f ’s return type using dexProtoGetReturnType() which returns a type de-
scriptor1. We convert the returned type descriptor as well as f ’s class descriptor
to something more readable by using convertDescriptor().

If f is not a constructor call (i.e., new Object()), we now generate a string
representation of the object. In getThis(), we first test if f is static as static
methods never have a this value. If f is non-static, we call objectToString()
on the appropriate argument to convert this to a string representation. For
normal functions, this will be the first argument2.

By adding the offset method->registersSize - method->insSize to the
current thread’s frame pointer we find the reference to the first argument. To
understand why this particular offset is used, consider the example source listed
in Listing 4.1a and its corresponding stack layout in Figure 4.1b.

1http://source.android.com/tech/dalvik/dex-format.html
2http://source.android.com/tech/dalvik/dalvik-bytecode.html

26

http://source.android.com/tech/dalvik/dex-format.html
http://source.android.com/tech/dalvik/dalvik-bytecode.html

public void func2 (int j1 , int j2) {
int a, b, c = 0;

a = j1 * j2;
b = j1 + j2;
c = j1 / j2;

/* Current instruction pointer
* points here.
*/

}

public void func1 (int i1 , int i2) {
int x = 0;

func2 (i1 , i2);
}

func1 (42 , 7);

(a) Source code (b) Stack layout

Figure 4.1: Example stack layout

Although Figure 4.1 shows the stack layout at the moment that func2()
is about to return, the layout during function entry is the same. The only
difference would be that the values of v0, v1 and v2 were not yet initialized.

Now all that is left is populating the parameters. We generate a string array
of parameters in getParameters(), followed by constructing a readable string
containing these parameters in getParameterString(). In getParameters(),
we loop over the in-arguments of f . We must keep in mind that some functions
do not have a this reference, which complicates the for loop a bit. We use the
DexParameterIterator struct and dexParameterIteratorNextDescriptor()
function to get the corresponding descriptor along with the parameter. For each
parameter, we then call parameterToString() to convert the parameter to a
string.

parameterToString() expects two u4 argument values that represent the
parameter: low and high. high will only be used when the parameter is a 64 bit
width argument (doubles and longs). The function also expects a char pointer
to the type descriptor of the parameter. The function then performs a simple
case/switch statement to construct the correct format string, depending on the
descriptor. Up to void, all transformations are pretty straightforward. chars
are a bit more complex due to the fact that Java UTF-16 encoded characters
must be converted to printable UTF-8 C strings. For arrays, we simply fall
through to the next case, which is the L (object) descriptor. Note that we could
do a bit more effort here and try to convert arrays of a primitive type to readable
output as well. For objects, objectToString() is called to convert the reference
to a valid C string representation.

handle method() now calls LOGD TRACE() to print the final formatted string
to the appropriate file. LOGD TRACE() is an inline function that first locks a
dedicated writelock mutex, followed by preparing the output file (if this was

27

Table 4.1: Possible race condition in LOGD TRACE

∆t thread A thread B

0 Trace is started . . .
1 dvmMethodTraceAdd()
2 LOGD TRACE()
3 fd2 = fopen("outputB", ‘a’)
4 am profile <pid> stop
5 fclose(fd1)
6 fclose(fd2)
4 fwrite(fd2, ...)

not yet done before) using prep log(). prep log() opens a new file in append
mode, called dump.<process-id>.<thread-id> in the preset output directory
(/sdcard/ or /data/trace/). true is returned if the file is ready for writing,
false otherwise (we ran into a couple of samples where fopen() failed since
there was no space left on the device). The writelock mutex is used to make
sure that there will be no writes when the method tracer is being disabled. An
example race condition that we avoid using the writelock mutex is illustrated
in Table 4.1

The remaining bits in handle method() relate to freeing the memory regions
that were used to store the output lines. When handle method() returns, we
increase the depth value for this thread so that indentation is setup correctly
for the next function entry.

It must be noted here that the TraceDroid performance may be improved
by replacing the LOGD TRACE() calls with a modified version of the log writing
function of the existing Android method tracer: if we’re running on the emula-
tor, there’s a magic page into which we can put interpreted method information.
This allows interpreted methods to show up in the emulator’s code traces. This
is an Android modification to the qemu sources to add support for tracing Java
method entries/exits. The approach uses a memory-mapped page to enable
communication between an application and the emulator3. Further research is
necessary to figure out how this can be achieved and if there really is a notable
performance gain.

Returning from a method: handle return() When the action given to
dvmMethodTraceAdd() equals METHOD TRACE EXIT (whenever a return state-
ment is interpreted), and if there is no pending exception, handle return()
will be called to print a return <type> [<value>] trace line. When finished,
the depth value for this thread is decreased to setup the indentation correctly
for the next function entry. Its implementation is similar to handle method().

Throwing an exception: handle throws() When the provided action equals
METHOD TRACE UNROLL or METHOD TRACE EXIT while there is a pending excep-
tion, handle throws() will be called to print a throws <exception> trace
line. A pending exception during a METHOD TRACE EXIT action indicate that f ’s
parent catches the thrown exception, while the METHOD TRACE UNROLL action

3http://android.googlesource.com/platform/external/qemu/+/
9980bbb9965ee2df42f94aafa817e91835dad406

28

http://android.googlesource.com/platform/external/qemu/+/9980bbb9965ee2df42f94aafa817e91835dad406
http://android.googlesource.com/platform/external/qemu/+/9980bbb9965ee2df42f94aafa817e91835dad406

indicate that the exception will be forwarded to the next parent in line and
that intermediate functions are ‘unrolling’. The implementation is similar to
handle method and handle return(). For unrolling methods, the exception
will be stored in the options argument as a Object*. For METHOD TRACE EXIT
actions, we fetch the exception our self using dvmGetException(). By using
this schema, the example source code shown in Listing 4.1a will result in the
method trace output as shown in Listing 4.1b.

Listing 4.1: Method trace for thrown exceptions

(a) Source

public void f3 () throws NullPointerException {
throw new NullPointerException ();

}

public void f2 () throws NullPointerException {
f3 ();

}

public void f1 () {
try {

f2 ();
} catch (NullPointerException e) {
}

}

(b) Method trace output

public void f1 ()
public void f2 ()

public void f3 ()
new java.lang. NullPointerException ()
return (void)

throws java.lang. NullPointerException
throws java.lang. NullPointerException

return (void)

Inline functions Inline functions require a special approach since their ar-
guments can no longer be fetched from the frame pointer. During a profiling ses-
sion, dvmPerformInlineOp4Dbg(u4 arg0, u4 arg1, u4 arg2, u4 arg3) is re-
sponsible for interpreting inlined methods. We modified this function so that it
passes an u4 array to the TRACE METHOD ENTER prototype that contains the argu-
ments. As outlined earlier, we identify inline methods in dvmMethodTraceAdd()
by providing a type value equal to TRACE INLINE.

The DEX optimization mechanism is in charge for deciding whenever a func-
tion shall be inlined or not. In general, we see that many equals() calls get
inlined.

Stop tracing

Since method trace lines are written to files on disk using fprintf(), one needs
to explicitly stop the method tracer in order to flush all buffers to disk. During a
normal execution flow, method tracing is stopped by executing the am profile
<pid> stop command, which triggers a call to dvmMethodTraceStop(). In
here, code is added that loops over the thread list and fclose()s any open
method trace output file.

Unfortunately, dvmMethodTraceStop() is not called when apps run into an
uncaught exception. To avoid incomplete log files, we added a similar fclose()
loop in threadExitUncaughtException() which is called whenever a thread
runs into such exception. It is not stated that uncaught exceptions will result

29

in a total VM crash, which is why trace output files may be reopened again in
append mode by prep log().

Added extra VM options

To conclude, below is an overview of added VM options and a short descrip-
tion. VMs will be started with these extra options by providing the -prop
"dalvik.vm.extra-opts=<option1> <option2> ..." argument to the emu-
lator.

• -uid:[UID] Enable method tracing for the app with uid equals UID.
• -tracepath:/data/trace Store trace output files in /data/trace/ in-

stead of /sdcard/. This option can be used if the tracer will be started
during boot and /sdcard/ is not yet mounted. The caller has to make
sure that the /data/trace/ directory is created in order to successfully
start tracing.

• -no-timestamp Disable timestamps in the method traces. Used for de-
bugging and benchmarking purposes.

• -no-tostring Disable toString() lookups. Used for debugging and
benchmarking purposes.

• -no-parameters Disable parameter lookups. Used for debugging and
benchmarking purposes.

4.1.2 Andrubis integration
As part of a SysSec4 scholarship between the Systems Security Group of the
VU University, Amsterdam and the SecLab of the Technical University, Vienna,
work was done on the integration of TraceDroid into the Anubis/Andrubis
platform. Anubis is an online service for analyzing malware, developed by
the International Secure Systems Lab5. Originally only targeting Windows PE-
executables, it was recently extended to accept and analyze Android applications
as well, codename Andrubis. The goals of Andrubis are similar to ours, which
is why cooperation was an obvious decision.

The Andrubis framework is based on DroidBox [41] for Android 2.1 which
was ported by the Andrubis developers to Android 2.3.4 a few months after
Andrubis was first released. DroidBox is essentially TaintDroid plus some
extra Dalvik VM modifications that log specific API calls. Andrubis uses
the modified DroidBox output to generate XML files that contain the analysis
results. It also performs a classification algorithm that results in a maliciousness
rating between 0 (likely benign) and 10 (likely malicious).

The dynamic analysis results highly depend on the API calls that are tracked
by DroidBox, while TraceDroid provides an overview of all API calls, plus
the functions that are called within the package. On top of that, as we will
outline in Section 4.3.3, the TraceDroid output can be used to make state-
ments on the effectiveness of the complete framework. It was thus decided to
implement the TraceDroid changes into the existing Android source trunk
directory of Andrubis.

4http://www.syssec-project.eu
5http://www.iseclab.org

30

http://www.syssec-project.eu
http://www.iseclab.org

Listing 4.2: Actual trace output

1372630874895660: new com. vvdveen . example1 . MainActivity ()
1372630874937955: new android .app. Activity ()
1372630874938174: return (void)
1372630874938249: return (void)
1372630874942135: protected void com. vvdveen . example1 . MainActivity ("com. vvdveen . example1 .

MainActivity@40516f98 "). onCreate ((android .os. Bundle) "null")
1372630874942666: protected void android .app. Activity ("com. vvdveen . example1 .

MainActivity@40516f98 "). onCreate ((android .os. Bundle) "null")
1372630874974343: return (void)
1372630874974504: public java.lang. Class java.lang. ClassLoader (" dalvik . system . PathClassLoader [/ data/

app/com. vvdveen .example1 -1. apk]"). loadClass ((java.lang. String) "com. vvdveen . example1 . SimpleClass ")
1372630874975984: return (java.lang. Class) " class com. vvdveen . example1 . SimpleClass "
1372630874976467: public java.lang. Class java.lang. ClassLoader (" dalvik . system . PathClassLoader [/ data/

app/com. vvdveen .example1 -1. apk]"). loadClass ((java.lang. String) "java.lang. String ")
1372630874976876: return (java.lang. Class) " class java.lang. String "
1372630875013498: new com. vvdveen . example1 . SimpleClass ((java.lang. String) "new class ",

(int) "42", (int) "7")
1372630875013675: return (void)
1372630875013739: public int com. vvdveen . example1 . SimpleClass ("new class "). min ()
1372630875013836: return (int) "7"
1372630875013955: public java.lang. Class java.lang. ClassLoader (" dalvik . system . PathClassLoader [/ data/

app/com. vvdveen .example1 -1. apk]"). loadClass ((java.lang. String) "java.lang. System ")
1372630875014380: return (java.lang. Class) " class java.lang. System "
1372630875014793: public java.lang. Class java.lang. ClassLoader (" dalvik . system . PathClassLoader [/ data/

app/com. vvdveen .example1 -1. apk]"). loadClass ((java.lang. String) "java.lang. StringBuilder ")
1372630875015190: return (java.lang. Class) " class java.lang. StringBuilder "
1372630875015477: new java.lang. StringBuilder ((java.lang. String) " minimum : ")
1372630875015692: return (void)
1372630875015755: public java.lang. StringBuilder java.lang. StringBuilder (" minimum : ")

. append ((int) "7")
1372630875015938: return (java.lang. StringBuilder) " minimum : 7"
1372630875016121: public java.lang. String java.lang. StringBuilder (" minimum : 7"). toString ()
1372630875016277: return (java.lang. String) " minimum : 7"
1372630875016363: public void com. android . internal .os. LoggingPrintStream ("

com. android . internal .os. AndroidPrintStream@4050e590 "). println ((java.lang. String) " minimum : 7")
1372630875056811: return (void)
1372630875056916: public int com. vvdveen . example1 . SimpleClass ("new class "). mul ()
1372630875057051: return (int) "294"
1372630875057463: new java.lang. StringBuilder ((java.lang. String) " multiplied : ")
1372630875057637: return (void)
1372630875057700: public java.lang. StringBuilder java.lang. StringBuilder (" multiplied : ")

. append ((int) "294")
1372630875058035: return (java.lang. StringBuilder) " multiplied : 294"
1372630875058154: public java.lang. String java.lang. StringBuilder (" multiplied : 294"). toString ()
1372630875058309: return (java.lang. String) " multiplied : 294"
1372630875058405: public void com. android . internal .os. LoggingPrintStream ("

com. android . internal .os. AndroidPrintStream@4050e590 "). println ((java.lang. String) " multiplied : 294")
1372630875059565: return (void)
1372630875059649: return (void)

The TraceDroid patches were implemented into the Andrubis source
trunk by Lukas Weichselbaum, the current maintainer of the Andrubis Android
sources. The TraceDroid integration into Andrubis is evaluated in more
detail in Chapter 5.

31

4.1.3 Discussion
We have described the necessary steps to extend the existing Android method
tracer so that its output includes parameter resolution and return value repre-
sentation. Looking back to the specification outlined in Section 3.2, the desired
method trace output for a given example application in Listing 3.1 and 3.2
on page 22, and the final method trace output as depicted in Listing 4.2 we
conclude that TraceDroid successfully implements our requirements.

A full benchmark of TraceDroid can be found in Chapter 5.

4.2 Android Framework Modifications
Although the VM patches discussed in Section 4.1 may be sufficient for simple
analysis, some changes had to be applied to Android’s internal framework as
well to allow better automated analysis support. In this section, we describe the
required steps to update the Android framework in order to achieve an optimal
integration between TraceDroid and the Android OS.

4.2.1 killProcess()
A problem that arises when running automated analysis, is that there are many
situations in which the Activity Manager (AM) may decide to kill our target
application. On the Android platform, killing an app means killing the cor-
responding VM, and thus destroying our not-yet-flushed-to-disk method trace
data. The best approach to overcome this issue, would be to modify the An-
droid kernel signal handler in such a way that method tracing is stopped before
the actual signal is send to the VM. Analysis showed, however, that most kills
originate from a single class within the Activity Manager Service, which is why
we decided to rather change the AM implementation than to rewrite dangerous
kernel code.

Most kills are executed from within ActivityManagerService.java. To
send the SIGKILL signal, the AM calls the static method killProcess(pid).
An intermediate method named killProcess(process, pid) was added to
ActivityManagerService.java, which calls killProcess(pid) as well, but
not before disabling method tracing for the process that is about to get killed.
It does so by calling the stopProfile() function, which is an existing func-
tion used by the am profile <pid> stop command. By translating all exist-
ing killProcess(pid) calls to the new prototype, we make sure that method
tracing is stopped before an app is killed, and thus decreasing the number of
incomplete log files.

4.2.2 Making am profile stop blocking
To ensure that all method trace data is flushed to disk before our analysis
platform fetches these files from the virtual android device, we use the existing
am profile <pid> stop command. This command disables the method tracer
for the requested pid and results in fclose() calls on open log files as explained
in Section 4.1.1. The am profile command, unfortunately, is non blocking
which makes it difficult for the framework to understand when the method
trace files are ready to be retrieved.

32

We modified the internals of the ActivityManager to make the am command
block until the method tracer is completely disabled and all cached method
tracer buffers are flushed to disk. Due to the different layers of abstraction
used within the Android OS, it was a cumbersome but interesting process to
follow the function calls and understand how and where changes were necessary.
We now discuss these changes in a bit more detail and as a result provide an
overview of how Android’s IPC and its abstraction layers are implemented.

From am to AM

Our entry point is the am command which is implemented in the Am.java source
file. In Am.java, an ActivityManagerProxy to the global activity manager is
retrieved using the ActivityManagerNative.getDefault() constructor from
ActivityManagerNative.java. The abstract ActivityManagerNative class is
extended by ActivityManagerService, which is the global activity manager.
The interface implemented by ActivityManagerNative is IActivityManager,
which is, according to the source code documentation, a system private API for
talking with the activity manager service. This provides calls from the applica-
tion back to the activity manager.

It is now possible for am to interact with the activity manager by using
the proxy: the profile <pid> stop command is implemented by calling the
ActivityManagerProxy.profileControl() function. This proxy function calls
transact() which triggers the IPC between am and the Activity Manager using
the Binder kernel driver. ActivityManagerNative’s onTransact() will take
over control and we now successfully switched from user process am to the global
activity manager which has information on all running processes.

From AM to target app

ActivityManagerNative.onTransact() calls profileControl(), a function
implemented in ActivityManagerService.java which looks up the requested
process in its map of ProcessRecords and does some sanity checks. If these
pass, profilerControl() is called on the main thread of the target process
which is implemented in ApplicationThreadNative.java.

The abstraction layer used here is similar to one we mentioned earlier: the
abstract ApplicationThreadNative class is extended in ActivityThread.java,
while it also has an ApplicationThreadProxy class that proxies requests be-
tween the Activity Manager and target applications. The profilerControl()
function of this class makes a call to transact() to initiate Binder IPC with
the ActivityThread. Here, we changed the FLAG ONEWAY parameter to 0 to
make this a blocking call.

The IApplicationThread that is implemented by ApplicationThreadNative
is a system private API for communicating with the application. This is given
to the activity manager by an application when it starts up, for the activity
manager to tell the application about things it needs to do.

From app’s main to DVM

ApplicationThreadNative.onTransact() calls profilerControl() which is
implemented in ActivityThread.java. We patched this function so that in the

33

+85: PROFILE CONTROL TRANSACTION = IBinder.FIRST CALL TRANSACTION+85
+27: PROFILER CONTROL TRANSACTION = IBinder.FIRST CALL TRANSACTION+27

Figure 4.2: Android source code control flow diagram for disabling method
tracing

case of a stop request, the handler function handleProfilerControl() is called
directly, instead of using the queueOrSendMessage() mechanism. This change
ensures that the am profile stop request is completed before the function
returns.

handleProfilerControl calls Debug.stopMethodTracing() — implemented
in Debug.java — which jumps into the VM by calling the native function
VMDebug.stopMethodTracing() in dalvik system VMDebug.c. From here, the
dvmMethodTraceStop() method in Profile.c is called.

The control flow for am profile <pid> stop to stop method tracing a pro-
cess is shown in Figure 4.2. The figure shows the three different processes
involved and their corresponding source code files.

34

4.2.3 Timeout values
The overhead caused by TraceDroid is likely to have a significant impact on
the overall performance of the Android OS. However, as discussed in Chapter 2,
the activity manager uses a fixed timeout value before apps are marked un-
responsive and the App Not Responding (ANR) dialog is shown. Such ANR
message is of no use for our automated analysis platform, and are in fact an
annoyance as they may consume valuable analysis time.

We decided to increase the ANR timeout value to 10s to compensate for
the overhead introduced by TraceDroid. This was achieved by modifying the
KEY DISPATCHING TIMEOUT constant in ActivityManagerService.java,

Next, we changed the behavior of the activity manager in case an unre-
sponsive app was detected by simply killing the app instead of showing the
ANR dialog. This was done by modifying the appNotResponding() method in
ActivityManagerService.java.

On top of that, we modified the AM so that unexpected crash dialogs are only
shown for a very brief moment before they are dismissed. The DISSMISS TIMEOUT
value in AppErrorDialog.java was decreased from 5 minutes to 1 second.

4.3 Analysis Framework
The TraceDroid Analysis Platform (TAP) is responsible for the analysis
of an Android application. In essence, the platform accepts an APK file as
input, analyzes it and then outputs its findings to a log directory.

The entry point of the framework lies in analyze.py. After parsing the
arguments, it starts static analysis, followed by dynamic analysis and finally it
searches for plug-ins to perform post processing on the log output.

4.3.1 Static analysis
Static analysis relies on a modified version of the Androguard project [20].
We search the AndroidManifest.xml file for entities outlined in Chapter 2 and
write a short summary to a file named static.log. Some of these results will
be used by the dynamic analysis section.

It must be noted that a recently detected new malware family exploits a pre-
viously unknown vulnerability in the way AndroidManifest.xml is parsed [66].
This malware sample caused our static analysis to fail. Our framework can
continue analysis if this happened though.

4.3.2 Dynamic analysis
Dynamic analysis triggers the start of a fresh virtual Android device that uses
our modified system image with TraceDroid installed. The framework then
installs the app, starts logcat, starts network capture and enables VM tracing
before returning into a main loop.

The main loop iterates over possible simulation actions and executes these.
It is possible to provide a subset of simulations as argument for analyze.py
to speedup the runtime. By default, TAP simulates the actions depicted in
Table 4.2.

35

Table 4.2: Description of default actions simulated during analysis

Action Description

Boot Simulate a reboot of the device by broadcasting the BOOT COMPLETED
intent.

GPS fix Simulate a GPS lock.
SMS in Simulate the receival of an SMS text message.
SMS out Simulate the sending of an SMS text message.
Call in Simulate an incoming phone call.
Call out Simulate an outgoing phone call.
Network disconnect Simulate a telephony network disconnect.
Low battery Simulate a low battery.
Package Simulate the installation, update and removal of another Android

application.
Main Execute the main activity of the app (the activity that is started

when a user would start the app directly from the home screen).
Create a screenshot after 10 seconds.

Activities Execute all activities found during static analysis.
Services Start all services found during static analysis.
Monkey Run the monkey exerciser* to simulate (pseudo) random input

events.

*Monkey exerciser: http://developer.android.com/tools/help/monkey.html

A special action named manual is available that will drop an ipython shell
shortly after the target app was installed to allow manual analysis of the ap-
plication. One could then use the internal emudroid object to trigger specific
actions (sending an SMS, receiving a call, etc.). It must be noted here that the
the monkey exerciser is always started with the same seed value for the pseudo-
random number generator (currently set to 1337). This ensures that re-runs of
the exerciser generate the same sequence of events. The stream of generated
events include clicks, touches and gestures as they could be made by a regular
user.

When all required actions are simulated, method tracing is disabled and log
files are pulled from the emulated device.

4.3.3 Post processing
The framework searches and runs Python modules found in the post processing
directory. It calls the special post analysis() function which expects the path
of the target APK, the path of the output log directory and a StaticAnalysis
object containing static analysis results.

We implemented a couple of post processing tools that add essential func-
tionality to the dynamic analysis platform. We describe these plug-ins in a bit
more detail in the remainder of this section.

Coverage

Having a list of methods that were executed during dynamic analysis as a result
of the TraceDroid method tracer, we could compute a code coverage value
that shows the percentage of APK functions triggered during analysis. We get a
list of functions provided by the APK (by doing some static analysis on the pack-
age) and then map the dynamically found functions against it. We map func-
tions based on their Java method signature excluding parameter types and modi-

36

http://developer.android.com/tools/help/monkey.html

fiers, i.e., on their <package>.<subpackage>.<classname>.<methodname> rep-
resentation.

This concept is realized in the coverage.py module. It is worth mentioning
that the coverage plug-in distinguishes two types of coverage computation: con-
servative and naive. If the latter type is used, all method signatures that match
popular external Android library APIs are ignored. Since many apps come with
third-party advertisement libraries such as Google’s AdMob6 or AMoBee’s Ad
SDK7, and these APIs usually come with many method signatures, we exclude
a number of such APIs from coverage computation to get a better indication of
the number of methods called that were written by the app authors them self.
The current list of excluded libraries is depicted in Table 4.3.

Table 4.3: Excluded libraries for naive code coverage computation

API Description

AMoBee AdSdk Advertisement library
AdWhirlSDK Advertisement library
Android API Official Android API
Android Support API Official Android support library
GCM Google Cloud Messaging library
Google AdMob Advertisement library
Millennial Media Adview Advertisement library
Mobclix Advertisement library
MobFox SDK Advertisement library
Netty Network application framework library

Methods are excluded from code coverage computation if their signature
matches one of the signatures found in the excluded APIs. By doing so, we
take the risk to lose signatures that are part of the app’s core packages, but are
named according to one of the popular APIs. For this reason, the conservative
option was kept as default computation approach.

From now on, naive code coverage computation is used unless stated other-
wise.

Feature extraction

The list of called methods, along with their parameter and return values are used
by our second plug-in to generate a feature footprint of the target app. The
resulting feature set may be used by a machine learning algorithm to cluster and
classify new apps and maybe even identify them as being malicious or benign.
The feature sets that we currently track is depicted in Table 4.4. On top of
that, bloom vectors are generated to store information about the (number of)
API calls.

Database storage

This simple plug-in writes log results to a sqlite3 database so that they can
be used in a later stage for automated analysis of the analysis results.

6http://www.google.com/ads/admob
7http://www.amobee.com/technology/ad_sdk.shtml

37

http://www.google.com/ads/admob
http://www.amobee.com/technology/ad_sdk.shtml

Table 4.4: Description of different feature sets extracted

Feature set Description

telephony.* To indicate the retrieval of core telephony records (IMEI, IMSI, MSISDN,
etc.).

sms.* To indicate SMS message activity (sending, parsing).
content.* To indicate special android.content.* method invocations

(getSystemService(), startService(), pm.signature.*, etc.).
io.* To indicate input/output activity (database I/O, file open/read/write, etc.).
misc.* To indicate a number of miscellaneous activity (crypto operations, digest op-

erations, native function calls, reflected methods, zip operations, etc.).
network.* To indicate network operations.

4.3.4 Inspecting TraceDroid output
The framework comes with a parser named trace.py to parse trace files gen-
erated by TraceDroid. The parser loads function or constructor entries and
their corresponding return values or thrown exceptions into single Python ob-
jects before dropping an ipython shell for easy access.

In this section, we describe the trace.py functionality in more detail. The
inspect tool is demonstrated in more detail in Chapter 5, where we analyze a
real-world Android malware example.

Description of fields

The main function of trace.py searches a given log directory for trace files
and parses these. An analyst can then access the trace results via the traces
dictionary which has (pid, tid) keys with Trace object values. Trace objects,
on their turn, have a list of found Function objects stored in the functions field
and a list of Constructor objects in the constructors variable. Function and
Constructor objects come with a number of fields of which most are described
in Table 4.5.

Table 4.5: Common fields for Function and Constructor objects

Field Description

modifiers List of modifiers (public, private, static, . . .).
parameters List of parameters represented as (type, value) tuples.
target object Full class name (including package name) of the related object.
target object s String representation of the related object in case of an instance

method.
exception Exception thrown (if any).
return type Return type for this function.
return value String representation of the returned value.
retway return for return statements or thrown for exceptions thrown.
name Name of the method.
is api Whether or not this is an API call.
depth Current call depth.
linenumber {enter|leave} Corresponding line number in the original trace file.
timestamp {enter|leave} Timestamp.
reflected method For java.lang.reflect.Method.invoke() calls, this value con-

tains another (stripped) Function object for the invoked
method.

38

For convenience, a couple of helper lists are generated for easy, direct access.
These variables are depicted in Table 4.6.

Table 4.6: Variables for direct access

Variable Description

functions List of all found functions.
constructors List of all found constructors.
reflected List of reflected functions.
fnames Dictionary of full function names, whether they are API functions and their

call count.
cnames Dictionary of full constructor names, whether they are API constructors and

their call count.
rnames Dictionary of full reflected function names, whether they are API functions

and their call count.

The helper function print names() accepts one of the fnames, cnames or
rnames variables and prints a table containing the function names and the
number of times they were called.

Call graphs

The parser comes with a generate callgraph() function that constructs a call
graph for the analyzed app using pydot, the Python interface to Graphviz’s Dot
language. It’s parameters are outlined in Table 4.7.

Table 4.7: Options for generate callgraph()

Parameter Value (default underlined) Description

apis True or False Include API calls in the call graph.
use clusters True or False Group functions that belong to the same class

into a subgraph.
use colors True or False Give each class a different color
vertical True or False Vertically align nodes in clusters.
splines ’spline’, ’ortho’ or ’line’ The graphviz spline type that should be used.

The value returned by generate callgraph() is a pydot.Dot object and
may be written to disk using one of the available write *(<filename>) func-
tions. For example, to write a pdf, use <ret-value>.write pdf(’filename.pdf’)
or <ret-value>.write png(’filename.png’) to write a png. It is also pos-
sible to get a more textual representation of the call graph by simply calling
print callgraph() with no further parameters.

4.4 Bytecode Weaving
Bytecode weaving is a technique that combines existing Java bytecode with
new code snippets or so-called aspects and is used in the Aspect Oriented Pro-
gramming (AOP) paradigm. In this section, we outline how Aspect Oriented
Programming can help us to write a TraceDroid alternative that works en-
tirely on the application level.

39

4.4.1 AOP: Aspect Oriented Programming
Using AOP, it is possible to weave new functionality into the existing bytecode
of an application without the need of having access to the original Java sources.
If we use special trace aspects, we can use this technique to add method tracing
functionality into an existing application.

Looking at the previously used SimpleClass source (depicted in Listing 3.1b
on page 22) and a new Java main source file depicted in Listing 4.3a, we now out-
line how method tracing can be enabled for this application. In Listing 4.3b, we
illustrate how the sources are compiled and how the application is run without
any further modifications.

Listing 4.3: Enabling method tracing using AOP

(a) Main.java

public class Main {
public static void main(String [] args) {

SimpleClass sc = new
SimpleClass ("new class ", 42, 7);

int min = sc.min ();
System .out. println (" minimum : " + min);

int mul = sc.mul ();
System .out. println (" multiplied : " + mul);

}
}

(b) Compiling

javac SimpleClass .java -d ./ classes /
javac Main.java -d ./ classes / -cp ./ classes /
rm *. java
java -cp ./ classes / Main

minimum : 7
multiplied : 294

(c) Weaving

ajc Tracer .aj -outjar Tracer .jar \
-cp /path/to/ aspectjrt .jar \
-source 1.5

ajc -inpath ./ classes / \
-aspectpath Tracer .jar \
-outjar Main.jar

java -cp Main.jar: Tracer .jar :\
/path/to/ aspectjrt .jar Main

Using the simplified tracing aspect outlined in Listing 4.4, we add tracing
functionality to the existing app in Listing 4.3c using the AspectJ compiler8.
It must be noted that by using the call pointcut (a set of specifications of
when the aspect code should be executed), we ensure that the tracing aspect is
added to the method that calls the target method. If we would have used the
execution pointcut, ajc will rewrite the prologue and epilogue of the target
methods, in which case we miss API calls as the compiler cannot rewrite those
methods [40].

If we execute the new jar file, we get output as depicted in Listing 4.5 on
page 43. It must be noted that this is a simplified working example and some
core functionality is still missing (parameter resolution, call depth tracking,
etc.), but it is clear that these are trivial to implement now.

A problem that arises when porting this mechanism to Android applications
is that existing bytecode manipulation libraries (e.g., Apache’s Byte Code En-
gineering Library (BCEL)9 or ASM10) used by AOP compilers like AspectJ do

8http://eclipse.org/aspectj
9http://commons.apache.org/proper/commons-bcel

10http://asm.ow2.org

40

http://eclipse.org/aspectj
http://commons.apache.org/proper/commons-bcel
http://asm.ow2.org

Listing 4.4: Minimal method tracing aspect

import org. aspectj .lang. reflect . MethodSignature ;
import org. aspectj .lang. reflect . CodeSignature ;
import org. aspectj .lang. JoinPoint ;
import java.lang. reflect . Modifier ;

aspect Trace {
pointcut traceMethods (): call (* *(..)) &&

!call (* java.lang. Object . clone ()) &&
! cflow (within (Trace));

before (): traceMethods () {
entrance (thisJoinPoint);

}
after () returning (Object retval): traceMethods () {

leaving (thisJoinPoint , retval);
}

synchronized void entrance (JoinPoint tjp) {
Object target = tjp. getTarget ();
Object [] parameters = tjp. getArgs ();
CodeSignature signature = (CodeSignature) tjp. getSignature ();
MethodSignature methodSignature = (MethodSignature) signature ;

String log = Modifier . toString (signature . getModifiers ()) + " ";
log += methodSignature . getReturnType (). getName () + " ";
log += signature . getDeclaringTypeName ();
if (target != null) log += "(" + target . toString () + ").";
else log += "(null).";
System .out. println (log + signature . getName () + " (...) ");

}
synchronized void leaving (JoinPoint tjp , Object retval) {

if (retval != null) System .out. println (" return " + retval . toString ());
else System .out. println (" return ");

}
}

not (yet) support manipulation of Dalvik bytecode. We overcome this issue by
converting Dalvik bytecode back to Java classes first, before weaving the method
tracer into the bytecode. When weaving succeeded, the patched Java classes are
repackaged into a new APK that can be installed on any Android device. For
decompiling the Dalvik bytecode to Java bytecode, we use the dex2jar tool [70]
that converts a given classes.dex into a classes.jar file. Figure 4.3 depicts
the different tools and processes that are involved when we add tracing aspects
to existing Android applications.

During analysis, we found that in some cases, the AspectJ compiler crashes
during the weaving process of the Java .jar. In most cases this was caused by a
jump is too far error, meaning that adding trace bytecode to the current method
exceeds its maximum size (which is limited to 64K11). Although a normal app
should never come close to the 64K boundary, Java obfuscators like ProGuard12

may combine or unroll multiple methods into a single large one that comes close
to the limit. When trace aspects are weaved into such large methods, it is likely

11http://bugs.sun.com/view_bug.do?bug_id=4262078
12http://developer.android.com/tools/help/proguard.html

41

http://bugs.sun.com/view_bug.do?bug_id=4262078
http://developer.android.com/tools/help/proguard.html

Figure 4.3: Weave process

that jump is too far errors arise.

4.4.2 Advantages and drawbacks of bytecode weaving
The VM method tracing technique discussed in Section 4.1 and the rewriting
technique discussed here both have their advantages and disadvantages. In
general, the VM method tracer yields better results and is more sophisticated
than the bytecode weaving approach, while the latter has the advantage that it
does not require a modified Android environment to perform the actual analysis.
Consider the following summary of package rewriting issues (or disadvantages).

• When rewriting apps, we change the signature of the package’s codebase
which could be detected by a malicious application. A malware author
could decide to not trigger detrimental activities if he finds that the MD5
hash of its classes changed, causing the app to hide its malicious behavior
and resulting in a low maliciousness rating.
Since Android APK containers are essentially signed jar files, repackaging
means that the signature of the app’s author will be replaced with another
signature. This could also be detected from within the app, possibly
initiating a different control flow for repackaged applications.
Signature checking could possible be intercepted by special aspects, but
that definitely complicates the process.

• Obfuscation techniques could break the repacking process if the the max-
imum method size is exceeded. To solve this, one would have to use byte-
code manipulation to split large methods into smaller chunks (method
outlining).

42

Listing 4.5: Trace aspect output

java -cp Main.jar :/ path/to/ aspectjrt .jar: Tracer .jar Main

public int SimpleClass (new class). min (...)
return 7
public java.lang. StringBuilder java.lang. StringBuilder (). append (...)
return minimum :
public java.lang. StringBuilder java.lang. StringBuilder (minimum :). append (...)
return minimum : 7
public java.lang. String java.lang. StringBuilder (minimum : 7). toString (...)
return minimum : 7
public void java.io. PrintStream (java.io. PrintStream@58fe64b9). println (...)
minimum : 7
return
public int SimpleClass (new class). mul (...)
return 294
public java.lang. StringBuilder java.lang. StringBuilder (). append (...)
return multiplied :
public java.lang. StringBuilder java.lang. StringBuilder (multiplied :). append (...)
return multiplied : 294
public java.lang. String java.lang. StringBuilder (multiplied : 294). toString (...)
return multiplied : 294
public void java.io. PrintStream (java.io. PrintStream@58fe64b9). println (...)
multiplied : 294
return

• The weaving process as it is described in this section depends on an ex-
ternal utility to convert Dalvik bytecode to Java bytecode. If an error is
found in dex2jar and exploited by a malware sample (as with [4]), the
weaving process fails.
It must be noted that DroidBox 2.3 comes with a rewriting module that
manipulates Dalvik bytecode directly, and thus circumventing this issue.
It is unclear how much effort is needed to extend DroidBox 2.3 to a full
method tracer.

It is obvious that TraceDroid does not suffer from above issues. On the
other hand, bytecode weaving has the following advantages over TraceDroid.

• By injecting method tracing code snippets into the app directly, there is
no longer the need to have a modified version of the Android OS. This
makes the analysis platform in which apps are installed and simulated
version independent.

• Having method tracing code at the application level, apps can be installed
and analyzed on real hardware without the need of building and installing
a customized firmware. This makes it possible for end users to analyze
applications using their own devices. This has as extra advantage that
emulator detection mechanisms used by malware authors become worth-
less.

• When AspectJ traces are used, as described in this section, extending the
tracer becomes as easy as writing a Java module. Implementing array res-
olution using aspects, for example, will be less complicated using aspects
than performing the resolution on a VM level.

43

Future work may focus on adding support for Dalvik bytecode to the popular
bytecode manipulation libraries (BCEL for Dalvik), as well as adding automatic
method outlining to the AspectJ ajc compiler.

44

Chapter 5

Evaluation

In this chapter, we evaluate our framework for dynamic analysis of Android
applications as it was described in Chapter 4. The contents are divided into the
following sections.

Benchmarks. We start with evaluating benchmarking results in Section 5.1.
Andrubis. We show in Section 5.2 that TraceDroid can safely be inte-

grated into Andrubis without losing analysis results that may be caused by
the additional slowdown.

Coverages. In Section 5.3, we dive deeper into the analysis framework and
describe our test setup for analyzing 500 Android applications. We discuss the
effectiveness of our analysis framework by looking at achieved code coverage.
We outline results for both TraceDroid and the current Andrubis implemen-
tation.

Failures. In Section 5.4, we list outstanding issues found in TraceDroid
in combination with the analysis frameworks.

Example. Finally, we analyze an Android malware application in more
detail in Section 5.5.

5.1 Benchmarking TraceDroid
In this section, we describe the benchmarking setup (Section 5.1.1) and results
(Section 5.1.2) for TraceDroid.

5.1.1 Benchmark setup
To compute the overhead that is introduced by TraceDroid, we updated the
Android browser application so that timestamps are printed during the process
of loading a webpage. The patch enables logging of timestamps during the
following stages of loading a webpage:

1. In the browser’s constructor code (i.e., when the browser is first started)
2. In the browser’s onPageStarted() method (i.e., when the browser is about

to start loading a webpage). We call this the ready time (thread is ready
to start loading).

45

3. In the browser’s onPageFinished() method (i.e., when the browser com-
pleted loading a webpage). We call this the load time (thread loaded the
page).

We use the Java SystemClock.currentThreadTimeMillis() function for
generating timestamps. By using a clock that provides thread based interval
timing, we exclude abnormalities that are caused by background processes. In
order to avoid any latency caused by Internet communication, we cached popular
websites and loaded them from the phone’s SD card. We also made sure that
the same Dalvik execution mode (portable interpreter without JIT) was used
for each test run to produce fair results.

Each webpage was loaded 10 times before the average ready and load times
were computed. The emulator was rebooted between each page load to avoid
any cache optimizations. We finally used a number of different speedup setups
(using the flags described in Section 4.1.1) to get a better understanding of the
expected slowdown:

Baseline Method tracing disabled.
Setup1 Method tracing with -no-timestamp, -no-tostring and -no-parameters.
Setup2 Method tracing with -no-timestamp and -no-tostring.
Setup3 Method tracing with -no-timestamp.

Full Method tracing without any speedup flag.
Android Method tracing using the original Android profiler.

The benchmark test was repeated with a special TraceDroid version where
LOGD TRACE() was disabled, thus omitting fprintf() calls. Results for this
second test would give an indication of the possible performance gain if we
could avoid calls to fprintf() in favor of using the ‘magic’ memory-mapped
page setup for direct communication between the application and emulator (as
discussed in Section 4.1.1 on page 28.

We used the Firefox Save Page As... option to generate a cached version of
the main pages of the following websites, including shown pictures and external
scripts.

• http://www.google.com
• http://www.youtube.com
• http://www.amazon.com
• http://www.wikipedia.org
• http://www.ebay.com
• http://slashdot.org
• http://stackoverflow.com
• http://www.tuwien.ac.at

In addition, we also browsed to about:blank.

5.1.2 Benchmark results
Results for the benchmark tests are depicted in Table 5.1. Timing values are
listed in milliseconds. The results are graphically displayed in Figure 5.1.

Studying the results, we conclude that method tracing using TraceDroid
introduces an interpreter slowdown of about 100%. The possible ‘magic page’

46

http://www.google.com
http://www.youtube.com
http://www.amazon.com
http://www.wikipedia.org
http://www.ebay.com
http://slashdot.org
http://stackoverflow.com
http://www.tuwien.ac.at
about:blank

Table 5.1: Benchmark results (all times in ms)

Benchmark Baseline Setup1 Setup2 Setup3 Full Android

Ready 616 858 (+39.29%) 870 (+41.23%) 1032 (+67.61%) 1245 (+102.19%) 1811 (+192.57)%
Ready (no-fprintf) 614 825 (+34.45%) 840 (+36.89%) 988 (+60.99%) 1208 (+ 96.74%)

Load 1699 2434 (+43.29%) 2494 (+46.81%) 2838 (+67.02%) 3185 (+ 87.48%) 5877 (+245.50)%
Load (no-fprintf) 1681 2414 (+43.55%) 2419 (+43.85%) 2728 (+62.24%) 3030 (+ 80.19%)

Baseline: Method tracing disabled
Setup1: -no-timestamp -no-tostring -no-parameters
Setup2: -no-timestamp -no-tostring
Setup3: -no-timestamp
Full: Method tracing without any speedup flag
Android: Method tracing using the original Android profiler

0 ms

300 ms

600 ms

900 ms

1200 ms

1500 ms

1800 ms

Disabled Full no-fprintf Setup1 Setup2 Setup3 Android

(a) ready time

0 ms

1000 ms

2000 ms

3000 ms

4000 ms

5000 ms

6000 ms

Disabled Full no-fprintf Setup1 Setup2 Setup3 Android

(b) load time

Figure 5.1: Benchmark results

improvement discussed earlier will have a very limited effect on the overall per-
formance (about 6%), which is likely due to the fact that the Android OS
already does useful buffering during fprintf() calls. Object resolution (call-
ing expensive toString() methods) and timestamp generation (system calls
to gettimeofday()) are by far TraceDroid’s largest performance killers: the
first are responsible for an extra overhead of 20–25%, while the latter introduce
another additional 20–30% slowdown.

It is interesting to notice the performance differences between the load and
ready benchmark (15% for the fully enabled method tracer). This indicates
that there are more background operations being processed during the load
than during the ready benchmark. These are internal function calls that occur
within the Android framework and are not invoked from the Browser’s bytecode
directly. The bottleneck is the WebKit layout engine that has to render the
requested webpage and any JavaScript that comes with it in order to display
it correctly. By not tracing the internal WebKit methods, we gain a clear
performance boost against the load benchmark: the increase of the tracer’s
workload is less intense than the considerable amount of extra work for the
browser.

Finally, compared to the existing Android method tracer, we conclude that
a full version of TraceDroid is about 1.45 to 1.85 times faster. This is caused

47

by the fact that we are not tracking method calls that are inside the Android
framework itself. However, if considering the core purpose of method profiling,
we feel that omitting these internal calls is more of an advantage than a draw-
back: app developers (the core group of profiling users) have no control over the
internal API implementations anyway, and are likely to rather not have them
included in method trace output than to have to filter them out.

5.2 Benchmarking TraceDroid + Andrubis
To decide whether TraceDroid could be integrated into Andrubis without
having its performance overhead causing a drop in the number of detected op-
erations, we setup a special Andrubis benchmark test. In this section, we first
describe Andrubis in a bit more detail in Section 5.2.1. We then describe our
benchmark setup and conclusions in Section 5.2.2.

5.2.1 Andrubis background
As discussed in Section 4.1.2, Andrubis uses a modified DroidBox 2.1 setup
combined with TaintDroid to track interesting API calls and specific personal
data leaks. Depending on the activities detected during analysis, Andrubis
generates a report that contains a number of different operation sections. The
operations that are currently being detected by Andrubis are described in
Table 5.2.

Table 5.2: Overview of operations detected by Andrubis

Operation group Subsections Description

File operations file read Reading file contents.
file write Writing file contents.

Network operations
network open Opening a network socket.
network read Reading from a socket.
network write Writing to a socket.

Broadcast receivers - A list of (dynamically) installed broadcast receivers.

Data leaks
network leak Leaking personal data via network traffic.
file leak Leaking personal data via file writes.
sms leak Leaking personal data via SMS texts.

Crypto operations crypto key Initializing a cryptographic key.
crypto operation Cryptographic operations (encrypt/decrypt).

DEX classes loaded - A list of dynamically loaded DEX classes.
Native libraries loaded - A list of native libraries loaded.
Bypassed permissions - A list of permissions bypassed by using another app’s capa-

bilities.
Sent SMS - SMS text messages sent.
Phone calls - Phone calls made.
Started services - A list of started services.

Most operations described in Table 5.2 come with a number of different fields.
A file read operation, for example, would have two fields: path for indicating
which file was read, and data to list the exact stream of bytes read from the file.
As another example, network read/write operations come with three fields:
host for storing the targeted host IP address, port for storing the used port
number and data for any data that was written over this connection. Currently,
Andrubis does not keep track of the protocol used (TCP/UDP).

48

It is important to mention that the monkey exerciser setup used by An-
drubis was truly random, in contrast to the setup used for TAP. This makes
it sometimes hard to compare the output of two Andrubis analysis runs, as
the randomness introduces an unpredictable difference between two consecutive
monkey runs. This behavior was changed and Andrubis now also uses a con-
stant seed, but these changes were not yet in place during the evaluation of our
work.

Since Andrubis runs samples for a small amount of time only (180 seconds),
we need to understand whether the TraceDroid performance overhead will
have a negative impact on the operations that are reported by Andrubis.

5.2.2 Benchmark results
We performed automated analysis twice on a small set of applications while
method tracing was disabled. We then computed a similarity percentage be-
tween the generated reports B1 and B2 to establish a baseline difference ∆B.
Subsequently, we repeated analysis four times with method tracing enabled
while increasing the runtime window and computed the similarity percentage
between the generated reports R1 . . . R4 and baseline report B1 (ground truth).
By comparing ∆R1 . . . ∆R4 with ∆B, we can make statements on the impact
of TraceDroid on Andrubis.

A report B contains a number of operations Bo1, Bo2, . . . , Bon. Each op-
eration is represented as a tuple (opcode, non-data fields, data field)
where opcode is a combination of the operation group and subsection as de-
scribed in Table 5.2. Two operations Boi and Boj are stated to be similar when
their opcode and all non-data fields are equal. We search R for similar oper-
ations to Bo1, Bo2, . . . , Bon without allowing repetition. This means that if
operation Roj is matched against Boi, it cannot be reused to also match similar
operation Boj+x. The similarity value is then computed by dividing the number
of matched operations by the number of total operations found in B.

The results are depicted in Table 5.3.

Table 5.3: Andrubis similarities for different runtime values (without repeti-
tion)

Set ∆B ∆R1 (180s) ∆R2 (240s) ∆R3 (300s) ∆R4 (360s)

17x benign 85.40% 58.72% 76.04% 81.35% 86.48%
18x malicious 91.33% 73.10% 84.51% 89.38% 87.19%

From Table 5.3, we conclude that due to the 100% overhead caused by
TraceDroid, we need to double the Andrubis runtime window in order to
maintain the same number of found operations.

It is interesting to notice that a longer runtime window does not necessarily
lead to a higher similarity percentage. After analyzing the malicious subset for
300 seconds, a similarity of 89% was achieved, while only 87% of the operations
were detected during the 360 seconds run. This is caused by the truly random
monkey exerciser setup used in Andrubis.

Before blindly increasing the Andrubis runtime window, we computed the
average code coverage gained during dynamic analysis. Due to repeating oper-

49

ations, we expect that code coverage does not follow the same increase as the
number of operations do. The results are depicted in Table 5.4.

Table 5.4: Andrubis coverage results for different runtime values

Set 180s 240s 300s 360s

17x benign 30.10% 32.88% 34.01% 34.39%
18x malicious 23.01% 24.56% 25.67% 25.69%

Regarding Table 5.4, We indeed notice that a doubled runtime window does
not result in twice the amount of code being executed. Looking at individual
sample results, we even see that for many samples code coverage remains almost
the same while the runtime value is increased.

This observation of a higher increase of found operations than code coverage
is likely caused by loops in the application’s codebase. Functions called within
a loop that initiates new operations do not increase the code coverage. Another
cause are functions called with different parameters or functions called from
multiple classes and thus generating multiple operations. These functions are
only counted once regarding code coverage.

We repeated the similarities benchmark while removing the requirement that
the amount of operations found with method tracing enabled shall be equal or
higher than the amount of similar operations found during the baseline test.
However, we now do require that two operation’s data fields are equal. The
results for this second similarities test are illustrated in Table 5.5.

Table 5.5: Andrubis similarities for different runtime values (equal data field
required)

Set ∆B ∆R1 (180s) ∆R2 (240s) ∆R3 (300s) ∆R4 (360s)

17x benign 75.73% 67.47% 74.79% 71.56% 72.38%
18x malicious 92.24% 84.51% 88.34% 88.74% 88.75%

Studying Table 5.5, we again see the negative effects that the randomness
of the monkey exerciser has on the operations initiated by the samples. During
the 240 second analysis run, some of the benign samples were triggered in a
similar fashion as during the second baseline test, resulting in a small similarity
difference (< 1%), while subsequent runs did slightly worse again.

From Tables 5.4 and 5.5 we conclude that by increasing the Andrubis time-
out value from 180 seconds to 240 seconds, we find an optimal balance between
analysis processing speed and code coverage. Assuming that plain Andrubis
was gaining a code coverage of 34.39% for our benign set and 25.69% for our
malicious set (the code coverages for a doubled runtime), we only lose about
1 to 2 percent code coverage, while the runtime increase is 33%. In exchange,
Andrubis now has full method tracer capabilities which are very convenient
for dynamic analysis. Considering that the DroidBox additions can now be
removed (as DroidBox is tracking only a subset of API calls, while we are
tracing every API call and more), the overhead can be reduced even further.

50

5.3 Coverage
In this section, we evaluate the effectiveness of the two dynamic analysis plat-
forms discussed previously (Andrubis and TAP) by looking at the code that
was covered during dynamic analysis. In Section 5.3.1, we first compare au-
tomated results against manual analysis, followed by a breakdown of different
simulation techniques in Section 5.3.2. We conclude with an extensive evalua-
tion of 500 Android applications in Section 5.3.3.

The samples used for analysis consist of a set of 250 malicious and 250 benign
samples as selected by the Andrubis team. Unfortunately, the malicious set
contained a couple of non-functioning samples, so we were able to use a set of
242 malicious and 250 benign Android applications to run our tests on. A list
of used samples can be found in Appendix A.

5.3.1 Compared to manual analysis
In order to use code coverage as a measuring technique for our analysis frame-
work, we first set our expectations by running manual analysis on a subset
of samples. By comparing the code coverage achieved during manual analysis
against the code coverage gained during automated analysis, we can make state-
ments on the effectiveness of the used simulations techniques. For this, we use
the code coverage methodology as outlined in Section 4.3.3 on page 36.

We randomly picked 20 malicious and 20 benign samples. We used a small
script that installed each app on a freshly emulated Android platform before
giving us a 180 seconds runtime window for our manual stimulation. After 180
seconds (the default Andrubis runtime), the app was closed automatically and
code coverage was computed. Within these 180 seconds, we tried to activate
as many components of the app as possible. We then analyzed the app auto-
matically using both Andrubis and TraceDroid while the runtime window
of three minutes remained the same.

In Table 5.6, we display the achieved code coverage for all samples that
were successfully tested. Although TAP does not use a fixed runtime for each
sample, we also include those results. Note that Andrubis failed to perform
analysis for 5 samples which were hence omitted from the table. Studying the
results, we can make the following observations.

• Despite the fact that naive coverage computation was used, coverage re-
sults are still fairly low. We try to explain possible causes for this later in
this section.

• The analysis platforms seem to perform better on malicious samples. This
is likely caused by the external simulations (e.g., simulate a reboot or re-
ceive an SMS text message) that were not triggered during manual anal-
ysis. In general, malicious applications are more likely to act upon these
events than benign apps, as it allows a malware writer to automatically
start intruding background services whenever such event occurs. This
could also explain why code coverage for our malicious set is about 10%
less than for benign samples. We test this hypothesis in Section 5.3.3.

• There is a large fluctuation between the number of functions that are
declared by an app (ranging from 2 to 5813 for this small subset). A
closer look at samples with such low amount of methods teaches us that

51

Table 5.6: Coverage results for benign and malicious samples

MD5 hash Manual Calls of total Andrubis TraceDroid

03aaf04fa886b76303114bc430c1e32c 34.52% 107 of 310 -4.19% -4.52%
128a971ff90638fd7fc7afca31dca16b 100.00% 2 of 2 0.00% 0.00%
12b7a4873a2adbd7d4b89eb17d57e3aa 7.55% 216 of 2860 -0.80% +0.03%
12dc6496fdd54a9df28d991073f26749 35.24% 160 of 454 -32.38% -2.42%
1390e4fecca9888cdf0489c5fe717839 24.43% 472 of 1932 -5.33% -1.19%
37eacdc7366403eac3970124c3a3fc32 37.70% 184 of 488 -17.83% 0.00%
3a11d47f994ec85cfeff8e159de46c54 24.08% 657 of 2728 -3.45% 0.00%
f240abe83b8da844f5dfdaceba9a6f7e 31.47% 772 of 2453 -12.27% -18.55%
f2c3afe177ef70720031f2fb0d0aa343 8.91% 27 of 303 +1.32% -0.66%
f40759b74eff6b09ae53a0dbcabc07d4 20.90% 98 of 469 -0.64% -0.43%
f5d6b6b019949329ef0de89aca6ac67e 58.14% 125 of 215 -27.91% -9.30%
f6a0e9573810d3da8a292b49940b09e2 100.00% 3 of 3 0.00% 0.00%
f81fbe1113db6ca4c25ec54ed2e04f42 47.95% 105 of 219 -12.79% -11.87%
f9b5afdff92f1eb5c870cf4b601e8dc1 3.89% 166 of 4269 -0.56% -0.28%
fb891ea00a8758f573ce1b274f974634 20.68% 97 of 469 -0.21% +0.00%
fbefbe3884f5a2aa209bfc96e614f115 41.95% 146 of 348 -16.09% +7.47%
fd1af0690436028285a889c1928041ca 56.83% 79 of 139 -9.35% 0.00%

Average for 17x benign 38.49% -8.38% -2.45%

0018874837a567609e289661cd418639 17.10% 85 of 497 -4.30% -0.60%
003d668ef73eef4aaa54a0deb90715de 22.39% 245 of 1094 -18.65% -1.01%
12436ccaf406c2bf78cf6c419b027d82 39.77% 35 of 88 -11.05% +2.27%
128629e7a3fd7f28ecff2039b5fd8b62 46.80% 476 of 1017 -30.07% -12.78%
f181409e206cbe2a06066b79f1a39022 10.31% 234 of 2269 +1.06% +1.94%
f3194dee0dc6e8c245dc94c5435750a5 13.17% 64 of 486 -1.64% +0.82%
f342d8f0c18410e582441b19de8dd5bb 32.59% 305 of 936 -13.30% -10.79%
f458ca5d41347a69c1c8dc99812485ee 10.05% 584 of 5813 -9.16% -1.93%
f46f75e4eb294d5f92c0977c48f5af4f 15.83% 132 of 834 +18.35% +19.18%
f4d80df6710b3848bf8c78c1b13fe3b5 14.81% 16 of 108 +9.87% +25.93%
f55a7ad2ab8b3ac2447964614493fffe 14.15% 15 of 106 +10.21% +26.42%
f7ad9e256725dd6c3cab06c1ab46fcc2 22.31% 620 of 2779 -11.71% -7.16%
f98ae3c49ce8d4d5ec70f45f06601629 67.74% 21 of 31 -33.92% +12.90%
fd225d8afd58cdec5f0c9b0f7fd77f58 41.34% 296 of 716 -19.07% +2.23%
fd48609ba4ee42f05434de0a800929ad 52.00% 52 of 100 +9.76% +9.00%
fdbce10ece29f14adfb7ebe99931d978 28.30% 30 of 106 +0.94% +1.89%
fe3cb50833c74c60708e4e385bb8b4fc 8.74% 41 of 469 -6.25% -1.28%
fead2a981fc24a2f9dd16629d43a6969 39.56% 36 of 91 -11.73% +1.10%

Average for 18x malicious 27.61% -6.70% +3.79%

these apps heavily rely on WebKit capabilities and are in essence just an
easy web browser where all the app’s functionality is implemented on a
server.

• TraceDroid performs slightly better than the Andrubis platform. This
is caused by the fact that Andrubis uses a fixed timeout value (180 sec-
onds in this case) which limits the number of different simulations Andru-
bis can initiate. A shorter runtime also means that the monkey exerciser
has less time to generate its sequence of events. We will see that the mon-
key exerciser is responsible for most method invocations in Section 5.3.2.

• Differences between manual and automated Andrubis analysis are not
excessive. The differences between manual analysis and TraceDroid
are even smaller and gives us hope that we can improve Andrubis as
well. It is obviously not expected that the currently used automated

52

simulations outreach manual analysis, due to the complicated nature of
most applications.

Understanding low code coverage results

Table 5.6 shows us that code coverage is relatively low (< 40%), even for manual
analysis. As it is desired to understand why this is the case, we analyzed the
log output in more detail and conclude that there are a number of reasons that
may have a negative effect on the code coverage numbers.

External libraries Many apps include external libraries that are used for a
variety of purposes. It is unlikely that an app uses the complete feature set of
an external library, which causes a lower percentage of code covered. Methods
from these libraries that are not invoked by the app, have thus a negative effect
on the percentage of code covered. If an app includes large libraries, it is likely
that the coverage results drop significantly.

External libraries may be generalized into three classes: advertisement APIs;
APIs for component access; and vendor-specific libraries. Most libraries seem to
relate to the first two classes: processing advertisements (e.g., Google’s AdMob1

or AMoBee’s Ad SDK2) and component access APIs (e.g., social media APIs
for Twitter3 or Facebook4 or special JSON or XML parsers5,6). Vendor-specific
libraries are found in apps developed using a visual development environment
(such as MIT’s App Inventor7 or commercial software like AppsBuilder8), but
may also be special helper libraries that appear in all apps developed by the
same company. We are, unfortunately, not yet able to distinguish and exclude
external libraries automatically other than by using a whitelist.

To illustrate the impact that external libraries have on the code coverage, we
took a closer look at the sample with MD5 hash 12b7a4873a2adbd7d4b89eb17d57e3aa.
Table 5.6 shows that 2644 methods were missed during dynamic analysis. An-
alyzing the code coverage log output teaches us that of these missed calls, an
immense 2522 methods are external library functions (Twitter: 1293, Facebook:
753, OAuth9: 160, Google (data, analytics, ads): 112, and vendor-specific: 204).
Recomputing the code coverage while excluding these libraries resulted in an
increase of the coverage percentage of more than 40%: from 7.55% to 49.61%.

Unreachable code As with normal x86 applications, apps are likely to con-
tain a number of functions that are (almost) never executed. These include
specific exception handlers or other methods that are only reachable via an
improbable branch.

Complex applications When manually analyzing large complex applications
such as games for only 180 seconds, it is likely that the analyzer does not have

1http://www.google.com/ads/admob
2http://www.amobee.com/technology/ad_sdk.shtml
3http://twitter4j.org
4http://developers.facebook.com/android
5http://jackson.codehaus.org
6http://kxml.sourceforge.net
7http://appinventor.mit.edu
8http://www.apps-builder.com
9http://code.google.com/p/oauth-signpost

53

http://www.google.com/ads/admob
http://www.amobee.com/technology/ad_sdk.shtml
http://twitter4j.org
http://developers.facebook.com/android
http://jackson.codehaus.org
http://kxml.sourceforge.net
http://appinventor.mit.edu
http://www.apps-builder.com
http://code.google.com/p/oauth-signpost

enough time to complete all levels or to trigger all options and thus ‘unlock’
new method regions in the codebase. This is even harder when there is no
knowledge about the app’s semantics at all, as is the case during automated
analysis. Thus the monkey exerciser is unable to simulate all the available
options that are provided by the application.

5.3.2 Breakdown of simulation actions
To understand how code coverage is distributed among the different simulation
actions and to determine which action is responsible for which percentage of
code coverage, we analyzed the Andrubis sample set while keeping track of the
simulation intervals. To ensure a clean environment, each sample was reinstalled
between two simulation actions. It must be noted that this approach limits
the total percentage of code covered since receivers or timers installed during
simulation x, will be lost during simulation x + n.

We ran analysis using both the Andrubis platform and TraceDroid. The
following list describes the simulation groups as identified for Andrubis.

Common Send text messages and initiate phone calls.
Broadcast Send intents to all broadcast receivers found in the manifest.
Activities Start all exported activities found in the manifest.

Services Send intents to all services found in the manifest.
Monkey Monkey exerciser.

The list of simulation actions applicable for TraceDroid can be found in Ta-
ble 4.2 on page 36. The breakdown results for Andrubis are listed in Table 5.7,
while Table 5.8 depictes the results for TraceDroid. In these tables, sum is
the total percentage of code that was covered during analysis. Due to overlap-
ping, this does not equal the sum of the coverages during individual simulation
rounds. It must also be noted that Andrubis failed analysis on some samples.
These failures will be discussed later in Section 5.4.

Table 5.7: Andrubis breakdown

Set Common Broadcast Activities Services Monkey Sum

219x benign 0.00% 0.79% 21.83% 0.56% 24.81% 27.74%
210x malicious 0.00% 4.68% 15.14% 7.14% 19.17% 27.80%

Studying the results, we observe the following behavior.

• Activity simulation and monkey exercising (which also visits numerous
activities) are responsible for the largest portions of code coverage. This
is due to the fact that activities are, in general, main entry points for
an application and often contain method invocations for initializing ob-
jects, installing action listeners, and setting viewpoints. It is expected
for the monkey exerciser to gain the highest amount of code coverage as
its randomized sequence of input events (pressing buttons, selecting op-
tions, switching tabs, etc.) can result in the execution of new application
components.

• The Andrubis common simulation group did not initiate any method
invocations. Inspection of the framework teaches us that this is caused by

54

Table 5.8: TraceDroid breakdown

Set B i o I O N L P M A S E sum

250x benign 0.43% 0.07% 0.00% 0.04% 0.01% 0.03% 0.00% 0.04% 20.00% 22.50% 0.69% 27.29% 29.93%
242x malicious 6.90% 1.63% 0.20% 1.26% 0.80% 0.52% 0.39% 0.04% 16.46% 20.23% 6.96% 26.06% 32.59%

B: boot
i: incoming text message
o: outgoing text message
I: incoming phone call
O: outgoing phone call
N: network disconnect
L: low battery
P: package removal/install/update
M: main activity
A: activities
S: services
E: monkey exerciser

its implementation: the operations listed under the common simulation
round are non-blocking. This means that after the last emulated event,
the app was immediately uninstalled and it was given no time to execute
any method.

• Malicious applications tend to initiate more services than their benign
counterparts. This comes not unexpected: services are allowed to run in
the background and offer a malware writer possibilities to secretly send
data to a remote server. On a similar note, we see that common phone
activities such as receiving text messages or receiving phone calls are of
limited interested for benign applications, while malicious apps are more
attentive. SMS text messages, for example, could be used by a mobile
botnet for C&C communication, while a banking trojan could forward
detected mobile TAN (Transaction Authentication Number) codes to a
remote server.

• From Table 5.8 we can confirm our hypothesis from Section 5.3.1 that
code coverage for malicious applications is higher than for benign apps.
This is indeed caused by the fact that a larger portion of malicious code
is activated during the special simulation rounds (mainly boot simulation
and text message receival).

5.3.3 Coverages results
Analysis was repeated without reinstalling the package between each simulation
round. It was expected that this would have a positive effect on the coverage
results, as receivers or services started during round x may now be activated in
round x + n. Results are depicted in Table 5.9 while a cumulative distribution
function (CDF) is shown in Figure 5.2.

Aside from the code coverage results, Table 5.9 also includes the percentage
of detected uncaught exceptions and VM crashes. This first number indicates
the percentage of applications that threw an unexpected exception during anal-
ysis (mostly a NullPointerException or the more general RuntimeException)
and points to faulty apps as such exceptions should — under normal circum-
stances — always be caught. The second number illustrates the percentage of

55

Table 5.9: Code coverage results

Platform Set Code coverage Uncaught exceptions VM crashes

Andrubis 233x benign 26.76% 18.88% 13.73%
231x malicious 27.29% 49.13% 6.09%

TraceDroid 250x benign 31.10% 24.00% 3.20%
242x malicious 35.02% 45.87% 1.65%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

C
o
ve

ra
g
e

Percentage of samples

Coverage distribution

Benign
Malicious

Figure 5.2: CDF for TraceDroid coverage results

apps that caused a complete VM crash during analysis. This normally indicates
a bug in the native code of the VM and may be related to the TraceDroid
implementation.

Surprisingly, the code coverage results for Andrubis from Table 5.9 are
worse than when we computed the coverage for each simulation separately in
Section 5.3.2. We feel that this is probably caused by the true randomness of
the Andrubis monkey exerciser setup as discussed earlier. Especially since we
do see an increase in code coverage percentage for TAP.

Furthermore, we identify differences between the percentage of uncaught
exceptions. Studying the results in more detail tells us that this is caused by
Andrubis not being able to analyze some of the samples. We also see that the
number of VM crashes for TAP are lower than for Andrubis. These failures
are outlined in more detail in Section 5.4.

From Figure 5.2, we deduce that for 80% of the samples a code coverage
of 50% or less was achieved. This corresponds to our earlier observation that,
on average, code coverage is relatively low. Also noticeable is the drop around
75–85% for malicious samples compared to the benign set. After studying the
results in more detail, we conclude that this dip is caused by a cluster of mal-
ware samples that are likely related to each other (i.e., they are from the same
malware family).

56

0%

20%

40%

60%

80%

100%

B i o I O N L P M A S E 350s

Code coverage breakdown for 250 benign samples

(a) Benign

0%

20%

40%

60%

80%

100%

B io I O N L P M A S E 350s

Code coverage breakdown for 242 malicious samples

(b) Malicious

Figure 5.3: Code coverage breakdown per simulation

Overall, we conclude that both analysis platforms are able to gain an aver-
age code coverage of about 30%, which, compared to manual analysis results
discussed earlier, is a decent value and should provide a good insight in the
app’s capabilities. TAP performs slightly better than the Andrubis platform,
which is likely caused by the more extensive set of simulation events and the
lack of a fixed runtime window.

We conclude with two figures that illustrate the increase of code coverage
per second for all analyzed samples in Figure 5.3. The x-tics are set on the start
of a new simulation action and are named according the abbreviations used in

57

Table 5.8.
The plots from Figure 5.3 confirm our previous statements and expectations

that malicious apps are attentive for the special simulations like reboot emu-
lation (so that background services can be started as soon as a possible) and
emulation of an incoming text message.

5.4 Failures
A small variety of failures were detected during the different number of auto-
mated analysis runs executed on our sample set. To make statements on the
impact of these failures on the analysis frameworks, we took a closer look at
those detected during the breakdown analysis runs from Section 5.3.2.

Failures were detected by inspecting the code coverage output files. The cov-
erage post processing script already detects and logs VM crashes by searching
for dumped stack traces in the logcat output files. We grouped these crashes
in an acceptable subclass, as they do not have a direct effect on the overall
functioning of the frameworks. In the case of non-existent coverage log files,
however, we identified a severe error (timeout) as this indicates that the auto-
mated analysis failed to complete successfully.

The output directories of the failed samples were examined in more detail to
classify failures into different sub-classes. The classification of failures detected
during the breakdown benchmark are depicted in Table 5.10.

Table 5.10: Classification of detected failures

Severe Acceptable

Platform Set Time1 Time2 Time3 Total Webcore Unknown Sigstkflt Setuid App

Andrubis 250x benign 15 3 13 31 (12.4%) 5 6 24 0 0
242x malicious 15 9 8 32 (13.2%) 1 5 20 0 0

TraceDroid 250x benign 0 0 0 0 (0%) 8 0 0 0 0
242x malicious 0 0 0 0 (0%) 1 0 0 3 1

Besides the dynamic analysis runtime window of 240 seconds, Andrubis
also installs a watchdog alarm that kills ongoing analysis if it does not finish
in time. This value defaults to 4 times the runtime window, but was increased
to 8 times the runtime value since the package was reinstalled between each
simulation round, introducing a possible extra overhead. We ran into a couple
of samples that still did not manage to finish in time. We distinguish three
different classes of these severe timeout issues.

Time1 Analysis was interrupted during the simulation of an event. Investigation
showed that the timeouts were caused by a very long delay during the app’s
installation. The reason for this is likely the modified DroidBox setup
that floods the logcat with output data obtained during the installation
of a package.

Time2 All simulation rounds were completed successfully but no code coverage
percentage was computed. This happens when an application invokes a
lot of methods, causing a slow down in the code coverage script which
ultimately triggers the global watchdog alarm.

58

Time3 Due to an error in the analysis framework, previous emulator instances
were sometimes not killed correctly, causing the boot of a fresh emulator
to fail. The analysis script then got stuck in an endless loop until it was
killed by the watchdog alarm.

The details for acceptable failures are more interesting and require some
more debugging as they trigger a crash of the Dalvik VM during execution.

Webcore Some samples crash with a jarray points to non-array object warn-
ing, followed by a stack trace of the VM. A Google search revealed that
this is a known bug in the emulator sources for Android 2.3.410. Un-
fortunately, no other fix is available but to upgrade to a newer platform
release.

Unknown This is a reproducible bug that occurs only on the Andrubis platform and
only when method tracing is enabled. The bug does not occur on TAP
with method tracing in place. It originates from the objectToString()
function and is likely caused by the combination of TaintDroid and
TraceDroid and requires further investigation by the Andrubis source
code maintainers. A short debugging session using the arm-eabi-addr2line
tool (Listing 5.1) illustrates that this is a complicated bug as it gets trig-
gered during TraceDroid’s .toString() invocation for object resolu-
tion. Depending on the object’s .toString() implementation, numerous
methods may have been invoked before the error comes into view. This
makes it hard to determine the exact method that is responsible for the
damage.

Sigstkflt The stack fault signal SIGSTKFLT is raised by the Android OS to trigger
a debugger dump when an app becomes unresponsive. Again, as with
the unknown bug, these signals were only detected on the Andrubis
platform. Inspection of the stack trace leads to a race condition in the
LOGD TRACE() function which causes a deadlock. Fortunately, these fail-
ures occur only after method tracing was stopped using the am profile
stop command and thus have very limited effect on the analysis results.
The fact that the bug cannot be reproduced within TAP makes it harder
to investigate in more detail.

Setuid Some samples printed a cannot setuid(10033): Try again warning
message before their VM crashed. Investigation of the crash reveals that
this is not an implementation issue, but the Rage Against The Cage ex-
ploit11, spawned by a malicious application, that is trying to obtain root
priviliges. The vulnerability exploited by Rage Against The Cage was
patched since Android 2.3 and does thus not function within Trace-
Droid and Andrubis.

App One sample crashed due to an error in one of the app’s native libraries.

Two other bugs were detected during analysis. The first relates to the way
Python decodes zip headers12 and was easily fixed by patching zipfile.py.
The second issue relates to a bug in the Android qemu drivers for emulating a

10http://code.google.com/p/android/issues/detail?id=12987
11http://dtors.org/2010/08/25/reversing-latest-exploid-release
12http://bugs.python.org/issue14315

59

http://code.google.com/p/android/issues/detail?id=12987
http://dtors.org/2010/08/25/reversing-latest-exploid-release
http://bugs.python.org/issue14315

Listing 5.1: Stack trace with added method resolution for the unknown bug

pid: 536 , tid: 536 >>> com. putitonline .da <<<
signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr 0000007 c

r0 00000000 r1 00000000 r2 00000034 r3 00000000
r4 be8bfda8 r5 4850 f750 r6 0000 ce60 r7 be8bfda8
r8 00000030 r9 be8bfdf0 10 48519450 fp 4850 f768
ip aca75cb9 sp be8bf8d8 lr aca681c3 pc aca6f436 cpsr 40000030

#00 pc 0006 f436 libdvm .so dvmSlotToMethod () in Reflect .c
#01 pc 0006813 e libdvm .so

Dalvik_java_lang_reflect_Method_getMethodModifiers () in java_lang_reflect_Method .c
#02 pc 00027144 libdvm .so dvmInterpretDbg () in InterpC - portdbg .c
#03 pc 0001 c5a0 libdvm .so dvmInterpret () in Interp .c
#04 pc 000603 ec libdvm .so dvmCallMethodV () in Stack .c
#05 pc 000606 e2 libdvm .so dvmCallMethod () in Stack .c
#06 pc 0004 f5cc libdvm .so objectToString () in Profile .c
#07 pc 0004 f788 libdvm .so parameterToString () in Profile .c
#08 pc 0004 f850 libdvm .so getParameters () in Profile .c
#09 pc 0004 fa7e libdvm .so handle_method () in Profile .c
#10 pc 0004 fc22 libdvm .so dvmMethodTraceAdd () in Profile .c
#11 pc 00031 de8 libdvm .so ...
...

GPS fix13. While a patch is available14, it was decided to temporarily disable
GPS simulation during analysis.

During analysis of the Andrubis data set using the TraceDroid platform,
no failures were found that relate to the VM modifications described in Chap-
ter 4. The webcore bug was detected for 9 samples (1.83%), but is unrelated
to our modifications. The other detected ‘failures’ (three times setuid (0.61%)
and once an app’s own native code (0.20%)) are solely app based.

Slightly more failures were detected during the Andrubis analysis run. For
63 samples (12.80%) analysis failed to complete in time. These timeouts, how-
ever, are unrelated to our VM modifications. The 44 sigstkflt and 11 unknown
errors (8.94% and 2.24% respectively) do relate to the method tracing implemen-
tation, but only the latter set has an impact on the results. Since these errors
were not seen during the TraceDroid analysis runs, they must be caused by
a combination of TaintDroid and the new method tracer. The number of
unknown failures is so low, however, that we can conclude that our Dalvik VM
modifications outlined in Chapter 4 prove to be stable enough and are suitable
for use in a production environment for automated analysis.

5.5 Dissecting Malware
In this section, we analyze a malicious Android application to demonstrate our
framework’s capabilities. After generating a clustered call graph and inspecting
the extracted features, we quickly identify suspicious code executions to nar-
row our further analysis. We show how our approach eliminates the need for
deobfuscation and demonstrate the profit gained by running manual dynamic
analysis to stimulate broadcast receivers in a more fine-grained matter.

13http://code.google.com/p/android/issues/detail?id=13015
14http://android.googlesource.com/platform/sdk/+/35425faccd6c6591c787f69dfb8e845720ca15acˆ!

60

http://code.google.com/p/android/issues/detail?id=13015
http://android.googlesource.com/platform/sdk/+/35425faccd6c6591c787f69dfb8e845720ca15ac^!

5.5.1 ZitMo: ZeuS in the Mobile
Our example is a mobile variant of the ZeuS trojan horse family. ZeuS’ botnets
are estimated to include millions of compromised computers and are used to
collect personal information of victims that include credentials for social net-
works or online bank accounts [34]. For the latter, PC-based ZeuS uses a scheme
wherein the bank’s official webpage is modified so that money can be transferred
to arbitrary accounts.

To prevent these attacks, banking services introduced the use of mobile
Transaction Authentication Number (TAN) messages as a form of two-factor
authentication. When a transaction is initiated, a TAN is generated by the bank
and sent to the user’s mobile phone by SMS. To complete the online transaction,
the user has to insert the received TAN into the bank’s webpage. The received
SMS message may contain additional information about the transaction such as
account number and amount of money that will be transferred.

The mobile ZeuS variant is used in addition to PC-based ZeuS to complete
malicious transactions. By intercepting and forwarding mTAN messages to
a remote server, it bypasses the two-factor authentication scheme [46]. PCs
infected with ZeuS trick users in installing the malicious app by stating that
their phone needs be activated as part of extra security measurements. Once
the victim entered his phone number, a text message is sent to the phone that
contains a link to the malicious application.

5.5.2 Dissecting a1593777ac80b828d2d520d24809829d
We ran our dynamic analysis tool on the ZitMo malware sample with MD5
hash a1593777ac80b828d2d520d24809829d of which VirusTotal reports that it was
detected as malicious by 32 out of 46 anti-virus vendors15. After completion
of the automated analysis run, we first have a quick look at the generated
screenshot during analysis of the main activity as depicted in Figure 5.4a.

The screenshot shows a huge security logo that contains an activation code.
It appears that there are very little possibilities to interact with the app. This
is confirmed by inspecting the output of the code coverage processing script
while using the --interval option. The graph for the coverage distribution as
depicted in Figure 5.4b clearly shows that the monkey exerciser has very limited
effect on the overall percentage of code coverage.

To get an overview of the app’s internal data flow, we generated a call
graph that is depicted in Figure 5.5 on page 67. Colored, clustered output was
used to easily identify the origin of method invocations between the different
components of the application. API calls were omitted to reduce the size of the
graph.

Studying the call graph, we observe that this particular ZitMo variant does
not obfuscate its method or class names which eases analysis. We identify
a receiver named SecurityReceiver with a suspicious GetLastSMS() method.
Noteworthy is also the MakeHttpRequest() method that is responsible for mak-
ing a HTTP request via Apache’s HttpURLConnection class. If we recall that
the app has a very limited set of possible interactions, this indicates that the
HTTP request is likely initiated as a reaction to one of our simulated events.

15https://www.virustotal.com/en/file/8ae9e08578b24ad61385eebbc17d78b0230e9177/
analysis

61

https://www.virustotal.com/en/file/8ae9e08578b24ad61385eebbc17d78b0230e9177/analysis
https://www.virustotal.com/en/file/8ae9e08578b24ad61385eebbc17d78b0230e9177/analysis

(a) Main activity

0%

20%

40%

60%

80%

100%

B i o I O N L P M A S E 215s
 0

 200

 400

 600

 800

 1000

Code coverage breakdown for ZitMo

Code coverage
Methods called

(b) Code coverage distribution

Figure 5.4: ZitMo

Our next step involves constructing a list of features that may indicate ma-
licious behavior. Listing 5.2 displays how we load the output log directory
and generate the feature set. Its outcome confirms that there was some net-
work activity initiated by the app during the analysis session. It also shows
that some personal data was read by the application that includes the phone’s
Internal Mobile Station Equipment Identity (IMEI) and International Mobile
Subscriber Identity (IMSI), as well SMS reading or writing activity.

Listing 5.2: Generating a feature set for ZitMo
./ trace --logdir a1593777ac80b828d2d520d24809829d .2013 -07 -14.14.08.57.143089
Dropping an ipython shell . You can now play with the traces .
In [1]: import features
In [2]: f = features . Features ()
In [3]: f. get_features (traces , api_classes , ’unknown ’)
In [4]: f.dump ()
...
io_database : True
network : True
telephony_imei : True
telephony_imsi : True
telephony_msisdn : True
telephony_sms : True

We start with dissecting the HTTP request. Continuing the current trace
session, in Listing 5.3 we search for invocations of getResponseCode().

The sample forwards our received message to a remote webpage at http:
//android2update.com/biwdr.php. To understand how the request URL is
constructed, we search for method invocations that return the URL’s parame-
ters. This is illustrated in Listing 5.4.

62

http://android2update.com/biwdr.php
http://android2update.com/biwdr.php

Listing 5.3: getResponseCode() invocation
In [5]: for f in functions :

...: if f.name == ’getResponseCode ’: print f. target_object_s
’org. apache . harmony .luni. internal .net.www. protocol .http. HttpURLConnectionImpl :

http :// android2update .com/ biwdr .php?to =15555215403
&i =310260000000000& m =000000000000000& aid =103& h=0&v =1.2.3
&from =4224& text= incoming +text+ message + XLastMessage &last =1 ’

Listing 5.4: Retrieving URL parameters
In [6]: for f in functions :

...: if f. return_value == ’310260000000000 ’:

...: print ’%s.%s() ’ % (f. target_object , f.name)
android . telephony . TelephonyManager . getSubscriberId () #IMSI

In [7]: for f in functions :
...: if f. return_value == ’000000000000000 ’:
...: print ’%s.%s() ’ % (f. target_object , f.name)

android . telephony . TelephonyManager . getDeviceId () # IMEI

In [8]: for f in functions :
...: if f. return_value == ’103 ’:
...: print ’%s.%s() ’ % (f. target_object , f.name)

com. android . security . ValueProvider . GetActivationCode ()

It is also interesting to see if there is a special method that dynamically
constructs the base URL in order to hinder static analysis. In Listing 5.5, we
first search for functions that return the base URL, followed by printing the
method traces for this particular function. Note that some output was omitted
or reformatted to maintain readability.

Listing 5.5: Domain name deobfuscation
In [9]: for f in functions :

...: if f. return_value == ’http :// android2update .com/ biwdr .php ’:

...: print ’%s.%s() ’ % (f. target_object , f.name)
com. android . security . ValueProvider . GetAntivirusLink ()

In [10]: for f in functions + constructors :
....: if isinstance (f.called_by , Function) and

f. called_by .name == ’GetAntivirusLink ’:
....: print ’%s(%s).%s(%s); ’ % (f. target_object ,f. target_object_s ,f.name ,

f. parameters)
....: print ’return "%s"’ % f. return_value

java.lang. String ("qh ’t ,;t>p%;%:% >/q/a<qndq%roi >qdq2up ,d%a >= tqe.cqo ,%m/,bi -w=dr.p,h’p").
replace (’[’, ’’);

return "qh ’t ,;t>p%;%:% >/q/a<qndq%roi >qdq2up ,d%a >= tqe.cqo ,%m/,bi -w=dr.p,h’p"
java.lang. String ("qh ’t ,;t>p%;%:% >/q/a<qndq%roi >qdq2up ,d%a >= tqe.cqo ,%m/,bi -w=dr.p,h’p").

replace (’=’, ’’);
return "qh ’t ,;t>p%;%:% >/q/a<qndq%roi >qdq2up ,d%a>tqe.cqo ,%m/,bi -wdr.p,h’p"

output omitted for readability
java.lang. String ("http %%:%// and% roid2upd %ate.co%m/ biwdr .php"). replace (’%’, ’’);

return "http :// android2update .com/ biwdr .php"

We see that the base URL is first read as a very obfuscated string and grad-
ually gets deobfuscated by calls to String.replace() to remove superfluous

63

characters. A similar approach can be used to print the method trace for a spe-
cific function. In our process of disassembling the internals of SecurityReceiver,
consider Listing 5.6 for printing the method trace of the suspicious GetLastSms()
method.

Listing 5.6: Method trace for GetLastSms()
In [11]: for f in functions :

....: if f.name == ’GetLastSms ’:

....: print ’%05d - %05d’ % (f. linenumber_enter , f. linenumber_leave)
00489 - 00536
In [12]: for f in functions + constructors :

....: if f. linenumber_enter >= 489 and f. linenumber_leave <= 536:

....: if isinstance (f, Function):

....: print ’%s %s %s.%s() ’ % (’ ’*f.depth ,f. return_type ,f. target_object ,f.name)

....: print ’%s return %s’ % (’ ’*f.depth ,f. return_value)

....: if isinstance (f, Constructor):

....: print ’%s new %s() ’ % (’ ’*f.depth ,f. class_name)
output reformatted for readability
com. android . security . NumMessage com. android . security . SecurityReceiver . GetLastSms ()

android .net.Uri android .net.Uri. parse ()
return ’content :// sms/ inbox ’
android . content . ContentResolver android . content . ContextWrapper . getContentResolver ()
return ’android .app. ContextImpl$ApplicationContentResolver@4053e060 ’
android . database . Cursor android . content . ContentResolver . query ()
return ’android . content . ContentResolver$CursorWrapperInner@40537e70 ’
boolean android . database . CursorWrapper . moveToFirst ()
return true
int android . database . CursorWrapper . getColumnIndexOrThrow ()
return 11
java.lang. String android . database . CursorWrapper . getString ()
return ’incoming text message ’
int android . database . CursorWrapper . getColumnIndexOrThrow ()
return 2
java.lang. String android . database . CursorWrapper . getString ()
return ’4224 ’
java.lang. StringBuilder java.lang. StringBuilder . append ()
return ’incoming text message ’
java.lang. StringBuilder java.lang. StringBuilder . append ()
return ’incoming text message XLastMessage ’
new com. android . security . NumMessage ()

return com. android . security . NumMessage@4053ba70

As its name already reveals, we see that the GetLastSms() method fetches
the latest received SMS text message from the user’s inbox and returns it as a
NumMessage object.

Continuing our study, we open the dumped method trace file and search for
more interesting execution traces. Depicted in Listing 5.7, We find a number of
string comparisons called by the AlternativeControl() method that deserve
some more attention.

Listing 5.7: Method trace for AlternativeControl()
public boolean java.lang. String (" incoming text message "). startsWith ("%"); return false
public boolean java.lang. String (" incoming text message "). startsWith (":"); return false
public boolean java.lang. String (" incoming text message "). startsWith ("*"); return false
public boolean java.lang. String (" incoming text message "). startsWith ("."); return false

64

The AlternativeControl() method seems to test whether the first char-
acter of the emulated text message matches a particular predefined character.
In Listing 5.8, we initiate another analysis session and restart analyzing the
sample. This time, however, we provide the --manual flag in order to have full
control over the content of emulated SMS messages.

Listing 5.8: Manual dynamic analysis
./ analyze .py --input ../ apks/ zitmo / a1593777ac80b828d2d520d24809829d --manual
...
In [1]: self.emu. sms_recv (1234 , ’%44444444 ’)
In [2]: self.emu. sms_recv (1234 , ’:33333333 ’)
In [3]: self.emu. sms_recv (1234 , ’*22222222 ’)
In [4]: self.emu. sms_recv (1234 , ’.11111111 ’)

We can now use the new method trace to reconstruct the control flow of
AlternativeControl(). Received SMS messages that start with a % sign in-
dicate an info request. AlternativeControl() will send an SMS text message
containing device information to a phone number that is extracted from the in-
coming message. Once finished, the SMS received broadcast is aborted so that
it will not appear in the user’s inbox. This is depicted in Listing 5.9.

Listing 5.9: Method trace for AlternativeControl()
public boolean com. android . security . SecurityReceiver (). AlternativeControl (" %44444444 ")

public boolean java.lang. String (" %44444444 "). startsWith ((java.lang. String) "%")
return (boolean) "true"
public java.lang. String
com. android . security . SecurityReceiver (). ExtractNumberFromMessage (" %44444444 ")
return (java.lang. String) " +44444444 "
public void
com. android . security . SecurityReceiver (). SendControlInformation (" +44444444 ")

public static boolean com. android . security . ValueProvider . IsTotalHideOn ()
return (boolean) " false "
public static boolean com. android . security . ValueProvider . IsAlternativeControlOn ()
return (boolean) " false "
public static java.lang. String com. android . security . ValueProvider . GetActivationCode ()
return (java.lang. String) "103"
public static java.lang. String java.lang. String . format ((java.lang. String)

" Model :%s AC :%s H:%d AltC :%d V:%s Mf :%s/%s", [Ljava .lang. Object ; @40533340)
return (java.lang. String) " Model : generic AC :103 H:0 AltC :0 V :1.2.3 Mf: unknown /2.3.4 "
public static void com. android . security . SecurityReceiver . sendSMS (" +44444444 ",

" Model : generic AC :103 H:0 AltC :0 V :1.2.3 Mf: unknown /2.3.4 ")
public static android . telephony . SmsManager android . telephony . SmsManager . getDefault ()
return (android . telephony . SmsManager) " android . telephony . SmsManager@40534448 "
public void android . telephony . SmsManager (" android . telephony . SmsManager@40534448 ").

sendTextMessage (" +44444444 ", "null",
" Model : generic AC :103 H:0 AltC :0 V :1.2.3 Mf: unknown /2.3.4 ",
"null", "null")

return (void)
return (void)

return (void)
return (boolean) "true"
final public void android . content . BroadcastReceiver (). abortBroadcast ()
return (void)

Examining the trace output file in more detail, we can determine the purpose

65

of AlternativeControl(). For this particular malware sample, alternative con-
trol stands for the use of SMS text messaging instead of Internet connectivity to
distribute personal information. Alternative control can be enabled by sending
a :<phone-number> message to the infected phone. Once enabled, all incoming
text messages will be forwarded via SMS to the specified phone number. It can
be disabled again by sending a text message that starts with a dot (.). Finally,
a message starting with * seems to disable the software entirely.

5.5.3 Discussion
In this section, we illustrated the power of our analysis framework by analyzing
an existing malicious application. We successfully identified and reconstructed
core components of the app while using only dynamic analysis output results.
Combined with existing static analysis tools, we believe that the framework can
greatly improve the speed of which unknown applications are disassembled and
their internal, potentially malicious, operation is revealed.

66

67

com.android.security.DataStorage$OpenHelper

com.android.security.MainActivity

com.android.security.ValueProvider

android.content.ContentResolver$CursorWrapperInner

com.android.security.DataStorage

com.android.security.NumMessage

com.android.security.SecurityReceiver

com.android.security.SecurityService

android.app.ContextImpl$SharedPreferencesImplandroid.app.ContextImpl$SharedPreferencesImpl$EditorImpl

org.apache.harmony.luni.internal.net.www.protocol.http.HttpURLConnectionImpl

com.android.security.WebManager

<init>()

onCreate()

Schedule()

GetActivationCode()

SetContext()

close()

<init>()

insert()

<init>()

getMessage()

getNumber()

AlternativeControl()

GetLastSms()

IsAlternativeControlOn()

LogTrace()

ReportFromScheduler()

onReceive()

GetBoolValue()

GetMessageReportUrl()

SaveBoolValue()

MakeHttpRequestWithRetries()

GetStaticDataString()

IsTotalHideOn()

IsUnInstalled()

onStartCommand()

CancelAlarm()

getBoolean()

edit()commit()

putBoolean()

GetAntivirusLink()

getResponseCode()

MakeHttpRequest()

Figure 5.5: Call graph for ZitMo

Chapter 6

Related Work

Research focusing on Android security and Mobile malware in general has been
an increasingly popular topic over the last decade. In this chapter, we provide
an extensive overview of related work in the field of Android malware.

We first outline background and survey studies in Section 6.1. Next, in Sec-
tion 6.2, we provide a systematization of knowledge regarding a broad range
of Android research proposals. We conclude with a more detailed comparison
between existing dynamic analysis platforms and our TraceDroid implemen-
tation in Section 6.3.

6.1 Background and Surveys
A number of studies focus on analyzing Android’s security mechanisms. Before
the first Android phones were even released in 2008, Schmidt et al. were one
of the first to discuss the security of Android smartphones with a focus on its
Linux side [61]. They state that Android’s open character represents a great
opportunity for researching security aspects on mobile devices. One of the first
studies done on Android’s permission model was done by Enck et al. [25]. This
work details Android’s internal components and their interaction.

In 2010, Shabtai et al. performed a comprehensive security assessment on
the Android framework [62]. They list a number of possible countermeasures
for tackling indicated high-risk threats to Android. After three years of research
and Android development, most of these threats are still applicable:

1. Maliciously using the permissions granted to an installed application.
2. Exploiting a vulnerability in the Linux kernel or system libraries.
3. Exposing private content.
4. Draining resources.
5. Compromising the internal/protected network.

The paper proposes several recommendations to improve Android’s security
mechanisms in respect to these threats. Most research started from that mo-
ment on focused on threat groups 1) and 3) as it turned out that a large part of
Android malware originates from these threats. This is confirmed by a Syman-
tec Research white paper from 2011 that addresses the motivations of recent

68

Android Malware [17]. This paper concludes that the current mobile moneti-
zation schemes has a low revenue-per-infection ratio. It was expected that this
ratio would increase when more devices store credentials backed by monetary
funds. Something realized less than a year in later already in 2012 with the
Eurograbber attack campaign, responsible for stealing over €36,000,000 [39].

In 2011, Enck discusses the current state of smartphone research and offers
directions for future research [23]. In the same year, Enck et al. study 1100
popular free Android applications using the ded decompiler.

A survey paper from 2011 by Becher et al. provides an overview of mo-
bile network security and used attack vectors and make statements on future
research [5]. Similar work was done by Vidas et al. [67].

A first analysis on actual mobile malware was done by Felt et al. and studied
46 pieces of iOS, Android, and Symbian malware that spread in the wild from
2009 to 2011 [29]. A more extensive research done by Zhou and Jiang in 2012
covers 1260 Android malware samples distributed among 49 different malware
families [78]. The huge data set was released to the research community as the
Malgenome Project1 and has ever since been used by many subsequent research
papers. They categorize existing ways Android malware is distributed into
three social engineering-based techniques: 1) repackaging; 2) update attacks;
and 3) drive-by downloads. For all techniques described in the paper, however,
users are always tricked in installing the — often over-privileged — malicious
application them self. To the best of our knowledge, no known malware has the
possibility to be installed on a user’s device without his or her explicit consent.

6.2 Systematization of Knowledge
Ever since the first Android phones were released in 2008, researchers have
proposed dozens of frameworks with a variety of purposes. In this section, we
outline our efforts in systematizing these proposals. We enumerate this existing
knowledge by means of an extensive reference table. For each proposal, we
distinguish a number of characteristics and provide a brief summary. Based on
their main purpose and approach, we classify the different research efforts into
distinct categories.

In order to have a complete overview of all available Android related tools
regarding Android’s security mechanisms, we also take a number of open source
applications into consideration. Although these tools are not necessarily results
of ongoing research in the field of Android security, they may still be valuable
for Android security researchers.

In the remainder of this section, we first describe the attributes that we use
to characterize research efforts in Section 6.2.1. In Section 6.2.2, we describe
the different categories a proposal can belong to. The final systematization of
knowledge table can be found in Section 6.2.3.

6.2.1 Attributes
We group distinct attributes in a small number of subcategories: type, tech-
nique, and deployment. We outline these categories in more detail in the
following paragraphs.

1http://www.malgenomeproject.org

69

http://www.malgenomeproject.org

Type The type of a framework describes the kind of research that is addressed.
We distinguish the following different types of frameworks:

Attack Proposals that address previously unseen attack vectors against the An-
droid OS or its end-users.

Defense Proposals that describe novel defense mechanisms to protect end-users
from specific malicious activity.

Analysis Proposals that describe the implementation or evaluation of an analysis
platform. Such platform can be used by malware researchers or reverse
engineers to gain information about an Android app’s internals. Trace-
Droid belongs to this category.

Detector Proposals that address a scheme to automatically detect and report ma-
licious behavior. These research topics may be of interest for anti-virus
vendors as they could help increasing the detection rate of unknown mal-
ware.

Technique A proposed work may use a number of techniques indicating
how the work is implemented. The following characteristics make it easy to
group frameworks that use similar mechanisms:

Dynamic Frameworks that use a form of dynamic analysis to analyze unknown
applications at runtime. TraceDroid belongs to this category as it has
the capability to run targeted applications in a controlled environment to
generate a behavioral footprint. Frameworks that protect users at runtime
against specific malicious behavior also belong to this feature group.

VMI Dynamic analysis frameworks that use Virtual Machine Introspection (VMI)
to intercept events that occur within the emulated environment [32]. VMI
based systems are implemented on the emulator level (which is qemu in
case of Android) and, as a consequence, are always prone to emulator eva-
sion [55]. An advantage of VMI is that no OS modifications are required,
which makes the analysis system highly portable.

Syscalls Dynamic analysis frameworks that collect an overview of executed system
calls, by using, for instance, VMI or strace.

Method tracing Dynamic analysis frameworks that trace particular method invocations.
TraceDroid is an example framework that uses method tracing.

Taint tracking Proposals that use a — possibly dynamic — taint tracking mechanism to
protect a user’s private data or to prevent memory corruptions within the
kernel from happening.

Static Proposals that perform some kind of static analysis on targeted appli-
cations to obtain a footprint. These results may be used during a later
processing stage of the framework’s implementation or may be presented
to the user directly. TraceDroid uses static analysis to efficiently stim-
ulate a targeted application during the dynamic analysis stage.

Decompiler Proposals that implement a Dalvik bytecode decompiler or dissassembler.
Weaving Frameworks that rewrite bytecode of existing applications using a bytecode

weaving technique similar to the one outlined earlier in Section 4.4.

Deployment If the proposed framework is available for download, the deploy-
ment group characterizes how it is deployed and implemented. For frameworks
that are not available for download, we use the proposal’s techniques to make

70

an estimated guess on how it is implemented. We distinguish the following
deployment types:

Android app Proposals that are deployed as an Android application which could be
installed by any Android user.

Android OS Proposals that are deployed as a modified Android OS to implement ad-
ditional features.

Application Proposals that are deployed as an ordinary (web) application or script to
perform some kind of analysis.

Proposals may use multiple deployment techniques. TraceDroid, for example,
has both an Android OS and application component: the extensive method
tracer is implemented as a modified OS, while a set of Python scripts are used
to automate analysis and communicate with the platform.

Systems that are purely VMI based, are listed as sole applications as they
only use a modified emulator while no OS changes are necessary.

Availability In addition to above characteristics, we also outline the avail-
ability of the discussed research by trying to obtain a working implementation
copy of each discussed framework. The result of this search is reflected as open
or closed source, commercially available (denoted as paid), remotely usable via
a specifically designed web application or not available (denoted as NA). An
overview of available frameworks and their accompanying URL is listed in Ap-
pendix B.

6.2.2 Classification
To structure our study of over 60 proposed frameworks, we classified them into
7 different categories. In the next paragraphs, we provide a brief description of
the distinct classes.

1. Static Analysis This class describes analysis tools that perform static
analysis on targeted Android applications. Most work categorized in this class is
not a result from scientific research efforts, but are ‘simple’ tools to aid research
analysts. These include decompilers and disassemblers like JEB and smali,
but also analysis platforms that help researchers identifying malicious code like
Androguard and Dexter.

2. Dynamic Analysis This class describes analysis platforms that run tar-
geted applications in a controlled environment to obtain some kind of behavioral
footprint. Results are normally presented to a user in the form of a report, pos-
sibly including a maliciousness rating. Most of these systems likely use some
form of additional static analysis during an earlier stage to successfully perform
the dynamic analysis. We discuss dynamic analysis platforms in more detail
and compare them to TraceDroid in Section 6.3.

3. Dynamic Defenses This class describes defense mechanisms that protect
users against malicious applications using a dynamic analysis approach. Most
of these proposals are implemented as a modified Android OS to keep track
of specific changes at runtime and a large number of these are specialized in

71

keeping track of some form of permission policy to prevent applications from
accessing restricted components.

4. Static Defenses This class describes proposals that use static analysis to
detect malicious or suspicious applications.

5. Attacks This class describes a small number of previously unseen attack
vectors against the Android platform.

6. Repackaging This class describes a small number of proposals that de-
tect or prevent the repackaging of Android apps. Repackaged apps are popular,
legitimate applications that have been disassembled and repacked with an ad-
ditional malicious payload. Users are tricked in installing such apps as the
promoted repackaged applications are often free versions of apps that normally
cost money.

7. Miscellaneous This class describes a number of miscellaneous research
efforts that do not fit in any other class type.

6.2.3 Overview of (proposed) frameworks
In Table 6.1 we provide a systematization of noteworthy proposals, classified
based on their purpose and characterized using the attributes discussed earlier.

72

Table 6.1: Overview of (proposed) frameworks
Type Technique Deployment

C
at

eg
or

y

Framework A
ttack

D
efe

nse
A

naly
sis

D
etector

D
ynam

ic
V

M
I

Syscalls
M

ethod
tracin

g

Tain
t

trackin
g

Static
D

ecom
pile

r

W
eavin

g
A

ndroid
app

A
ndroid

O
S

A
pplic

atio
n

Availa
bili

ty

Summary

St
at

ic
A

na
ly

si
s

Androguard [20] x x x x x open

Androguard is a popular comprehensive static analysis tool for Android applications. It can disassem-
ble and decompile Dalvik Bytecode back to Java source code. Given two APK files, it can also compute
a similarity value to detect repackaged apps or known malware. It also has modules that can parse and
retrieve information from the app’s AndroidManfest.xml. Due to its flexibility, it is used by some other
(dynamic) analysis frameworks that need to perform some form of static analysis.

APKinspector x x x x open APKinspector is a static analysis platform for Android application analysts and reverse engineers to
visualize compiled Android packages and their corresponding DEX code.

apktool x x x open

APKtool is a tool for reverse engineering Android applications. It can decode resources to nearly
original form and rebuild them into a new Android package after they have been modified. APKtool
can be used to add additional features or extra support to existing applications without going through
the original author. We use APKtool to extract and rebuild existing applications during the bytecode
weaving process described in Section 4.4.

Dedexer x x x x open Dedexer is a disassembler tool for DEX files. It reads DEX files and converts them into an ‘assembly-
like’ format which is largely influenced by the Jasmin syntax2.

Dexter x x x x web

Dexter is a web application designed for static analysis of Android applications. Its features are
comparable with those of Androguard and APKinspector but it has some additional collaboration
functionality to ease knowledge sharing among multiple researchers.

Dare [49] x x x x open Dare is a project which aims to enable static analysis on Android applications by retargeting them to
traditional .class files.

ded [27] x x x x closed
ded converts Android applications in DEX format to traditional .class files which can be processed by
existing Java tools. It was superceded by Dare.

dex2jar x x x x open
dex2jar is a tool for converting Android’s DEX formatted files to Java bytecode. Given an APK,
dex2jar can convert it directly to a .jar file and vice versa. We use dex2jar in our bytecode weaving
process outlined in Section 4.4.

JEB x x x x paid

JEB is a commercial flexible interactive Android decompiler. It claims to be able to directly decompile
Dalvik bytecode to Java source code. It should also be able to disassemble an APK’s contents so that
users can view the decompressed manifest, resources, certificates, etc. Although its webpage contains
comparisons of JEB against dex2jar, it does not mention the decompiler functionality of Androguard,
which also directly converts Dalvik to Java source, instead of going through Java bytecode.

smali x x x x open smali/baksmali is an assembler/disassembler for the DEX file format. Like Dedexer, it’s syntax is
loosely based on the Jasmin syntax.

Radare2 x x x x x open
Radare2 is an open source reverse engineering framework which provides a set of tools to disassemble,
debug, analyze, and manipulate binary Android files. An official app is available for download from
Google Play and can be used to dissect installed applications.

Julia [53] x x x paid

Julia is a static analyzer for Java bytecode to perform formally correct analysis based on abstract
interpretation and can be used to automatically find bugs and flaws in existing applications. Recent
efforts were done to include support for Dalvik bytecode.

continued . . .

2Jasmin is an assembler for the Java VM: http://jasmin.sourceforge.net

http://jasmin.sourceforge.net

Overview of (proposed) frameworks, continued

Type Technique Deployment
C

at
eg

or
y

Framework A
ttack

D
efe

nse
A

naly
sis

D
etector

D
ynam

ic
V

M
I

Syscalls
M

ethod
tracin

g

Tain
t

trackin
g

Static
D

ecom
pile

r

W
eavin

g
A

ndroid
app

A
ndroid

O
S

A
pplic

atio
n

Availa
bili

ty

Summary

D
yn

am
ic

A
na

ly
si

s

AASandbox [7] x x x x x x x NA

AASandbox uses both static and dynamic analysis to analyze Android programs to automatically detect
suspicious applications. Static analysis scans the package for malicious patterns without installing it,
while the dynamic analysis implementation of AASandbox is placed in kernel space and hijacks systems
calls for further analysis. It uses the monkey exerciser to generate random user input.

Andrubis [42] x x x x x x x x x x x web

Andrubis is an extension of the Anubis service: a platform for analyzing unknown applications. To
the best of our knowledge, Andrubis was the first dynamic analysis platform for Android applications
that has been made publicly available as an easy-to-use web application in May 2012. Users can
submit Android applications and receive a detailed report including a maliciousness rating when analysis
finished.

AppsPlayground [56] x x x x x x x x open
AppsPlayground is a framework that automates analysis of Android applications and monitors taint
propagation (using TaintDroid), specific API calls and system calls. Its main contribution is a heuristic-
based intelligent black-box execution approach to explore the app’s GUI.

CopperDroid [58] x x x x x x web

CopperDroid uses VMI-based dynamic system call-centric analysis to describe the behavior of Android
applications. It features a stimulation technique to improve code coverage, aimed at triggering additional
behaviors of interest. Like Andrubis, it is available to the public as a web application where users can
submit samples for analysis.

DroidBox 1 x x x x x x x open
DroidBox is a dynamic analysis platform for Android applications. It adds additional tracing code to
the core libraries and uses TaintDroid to detect private data leakages. A Python script is responsible
for automating analysis and interpreting output results.

DroidBox 2 x x x x x x x x open

A recent update of DroidBox introduces APIMonitor: a tool that can rewrite existing applications
to add monitoring code for specific API calls. This removes the need of having to port DroidBox to
newer Android versions, as the core library modifications are now no longer necessary. APIMonitor
rewrites Dalvik bytecode directly, in contrast to our approach outlined in Section 4.4.

DroidScope [72] x x x x x x x open

DroidScope is a fine-grained dynamic binary instrumentation tool for Android that rebuilds two levels
of semantic information: OS and Java. It provides an instrumentation interface which can be used to
write plug-ins. API tracing, native instruction tracing, Dalvik instruction tracing and taint tracking
plug-ins have already been implemented. DroidScope works entirely on the emulator level and requires
no changes to the Android sources.

Mobile-Sandbox [64] x x x x x x x web

Mobile-Sandbox is a system designed to automatically analyze Android applications using both static
and dynamic analysis. It uses DroidBox to keep track of Java code execution and a ported version of
ltrace to track native code. TaintDroid is used to track private data leakages.

SandDroid∗ x x x x x x x x web
SandDroid is an automatic Android application analysis sandbox. It uses Androguard and DroidBox
to perform dynamic analysis and its reports come with a risk score to indicate potential threats.

ForeSafe∗ x x x x x x x web

ForeSafe Mobile Security combines static analysis with a fully automated server-side dynamic analysis
system. ForeSafe parses reconstructed source code for patterns of known bad or suspicious behavior to
detect malware. Dynamic analysis is used to reveal the use of obfuscated strings and Internet activity.
An official Android application is available which allows users to scan installed applications on their
device or to upload them to ForeSafe’s cloud solution for remote analysis.

continued . . .

Overview of (proposed) frameworks, continued

Type Technique Deployment
C

at
eg

or
y

Framework A
ttack

D
efe

nse
A

naly
sis

D
etector

D
ynam

ic
V

M
I

Syscalls
M

ethod
tracin

g

Tain
t

trackin
g

Static
D

ecom
pile

r

W
eavin

g
A

ndroid
app

A
ndroid

O
S

A
pplic

atio
n

Availa
bili

ty

Summary

D
yn

am
ic

A
na

ly
si

s

JoeSecurity∗ x x x x x x x x web

JoeSecurity analyzes APKs in a controlled environment and monitors the runtime behavior of the
APK for suspicious activities. It uses an instrumentation engine to repack Android applications with
instrumentation code. Dynamic analysis results are later mapped against statically obtained disassembly
code. It also stimulates broadcast receivers by simulating specific intents. It uses hybrid code analysis
to detect and classify malicious behavior within an APK.

Google Bouncer∗ [44] x x x ? ? ? ? x ? ? x x NA

In February 2012, Google announced Bouncer: a system for automated scanning of the Google Play
Store for potentially malicious software. The service performs static analysis to scan apps for known mal-
ware, spyware and trojans while every application will also be installed on Google’s cloud infrastructure
to be simulated as how it will run on a real Android device.

D
yn

am
ic

D
ef

en
se

s

Andromaly [63] x x x x open
Andromaly is a host-based malware detection system that continuously monitors smartphone features
and events. It applies machine learning to classify the app’s behavior (time between keystrokes, CPU
consumption, network traffic, etc.) as normal (benign) or abnormal (malicious).

Apex [47] x x x open Apex is an extension of the Android platform which makes it possible to enable or disable permissions
of newly installed applications on an individual basis.

AppFence [35] x x x open
AppFence is an extension of the Android platform which makes it possible to allow newly installed
applications access to only specific components (e.g., use Internet access only to connect to known
advertisement hosts, use fake contact information, etc.).

Aurasium [71] x x x x web
Aurasium can harden android apps so that the user is prompted whenever the app attempts suspicious
actions (read privacy info, send SMS, etc.).

ConUCON [4] x x x NA

ConUCON extends the existing Android security mechanisms to implement a policy enforcement frame-
work which enables users to grant permissions in a fine-grained manner and to support revocations and
modifications on an app’s permissions at runtime.

CrowDroid [11] x x x x x NA

CrowDroid uses a form of crowdsourcing to avoid the spread of detected malware to a larger community.
An Android application is responsible for monitoring the device’s system calls and forwards this data
to a remote server. There, analysis is done to detect malware based on the system calls made.

I-ARM-Droid [19] x x x x NA
I-ARM-Droid rewrites android apps so that they contain a reference monitor to allow users to apply
security policies for a set of security sensitive API methods.

Kirin [24] x x x open Kirin is a logic-based tool for Android that ensures permissions needed by apps are met by global safety
invariants.

MockDroid [6] x x x open MockDroid is a modified Android platform that allows users to control the permissions of an application
at runtime.

Paranoid Android [54] x x x x x x NA

Paranoid Android runs replicas of a user’s device in the cloud on which security checks are performed.
These include dynamic analysis to detect certain types of zero-days attacks (using taint tracking anal-
ysis), system call anomaly detection and anti-virus file scanning.

Pegasus [16] x x x x NA
Pegasus is a system that uses permission event graphs to automatically detect sensitive operations
being performed without the user’s consent.

Quire [21] x x x NA

Quire is a modified Android platform that tracks the call chain of on-device IPC allowing an app the
choice of operating with the reduced privileges of its callers or exercising its full privilege set by acting
explicitly on its own behalf.

Saint [50] x x x NA
Saint is a modified Android platform to provide apps the utility to control to which other apps their
interfaces/capabilities are granted.

continued . . .

Overview of (proposed) frameworks, continued

Type Technique Deployment
C

at
eg

or
y

Framework A
ttack

D
efe

nse
A

naly
sis

D
etector

D
ynam

ic
V

M
I

Syscalls
M

ethod
tracin

g

Tain
t

trackin
g

Static
D

ecom
pile

r

W
eavin

g
A

ndroid
app

A
ndroid

O
S

A
pplic

atio
n

Availa
bili

ty

Summary

D
yn

am
ic

D
ef

en
se

s

TaintDroid [26] x x x x x open
TaintDroid is a system-wide dynamic taint tracking and analysis system for simultaneously tracking
multiple sources of sensitive data. It provides realtime analysis by leveraging Android’s virtualized
execution environment while introducing a 14% performance overhead.

TISSA [79] x x x NA

TISSA (Tamming Information-Stealing Smartphone Applications) empowers users to flexibly control
in a fine-grained manner what kinds of personal information will be accessible to an application. It’s
policies can be dynamically adjusted at runtime.

Xmandroid [10] x x x x NA
XManDroid extends Android’s monitoring mechanism to detect and prevent application-level privilege
escalation attacks at runtime based on a system-centric system policy.

YAASE [59] x x x x NA

YAASE is an Android security extension that supports fine-grained access control policies. YAASE
uses TaintDroid to enforce security decisions on how data has to be disseminated within the device
(app to app) or the outside world (through Internet).

St
at

ic
D

ef
en

se
s

Cerbo et al. [13] x x x NA
Cerbo et al. present a methodology for mobile forensics analysis to detect malicious applications. The
methodology relies on the set of permissions exposed by each application.

DroidChecker [15] x x x x NA

DroidChecker is an automated analysis system to detect capability leaks in new Android applications
and to find out how prevalent they are in existing apps. It uses interprocedural control flow graph
searching and static taint checking to detect exploitable data paths.

DroidRanger [80] x x x NA

DroidRanger is a system for detecting both new and already known Android malware. It uses
permission-based behavioral footprinting to detect new samples of known Android malware families
and heuristics-based filtering to identify certain inherent behaviors of unknown malicious families.

Mann and Starostin [45] x x x x NA

Mann and Starostin propose a framework to check whether the Dalvik bytecode of a given applica-
tion conforms to a specific privacy policy. It detects privacy leaks like TaintDroid while using static
information flow analysis.

MAST [14] x x x NA
MAST is a Mobile Application Security Triage architecture that uses statistical analysis to direct scarce
malware analysis resources towards the apps with the greatest potential to exhibit malicious behavior.

RiskRanker [33] x x x NA
RiskRanker is a scalable automated system to analyze whether an app exhibits dangerous behavior
(e.g., launching root exploits or sending background SMS messages).

Sarma et al. [60] x x x NA

Sarma et al. compare an app’s requested permissions against the permission set of similar applications
of the same category. This way, they can inform users whether the risks of installing an application is
commensurate with its expected benefit.

SCanDroid [31] x x x x open
SCanDroid extracts security specifications from an application’s manifest and then applies data flow
analysis using the app’s source code to reason about the consistency of the specifications. Its intended
use is comparable with TaintDroid.

Stowaway [28] x x x x NA
Stowaway detects over-privileged Android applications by comparing the set of used API calls against
the API calls requested via the AndroidManifest.xml.

Whyper [52] x x x NA
Whyper focuses on permissions for a given app and examines whether the app descriptions provides
any indication for why the app needs the permissions.

A
tt

ac
ks

Andbot [69] x x NA

Andbot is a design of a mobile botnet exploiting a novel command and control (C&C) strategy named
URL flux. The bot would have desirable features including being stealthy, resilient and low-cost which
promises to be appealing for bot masters.

Davi et al. [18] x x NA
Davi et al. demonstrate a privilege escalation attack on Android using a ROP attack on a higher
privileged application.

continued . . .

Overview of (proposed) frameworks, continued

Type Technique Deployment
C

at
eg

or
y

Framework A
ttack

D
efe

nse
A

naly
sis

D
etector

D
ynam

ic
V

M
I

Syscalls
M

ethod
tracin

g

Tain
t

trackin
g

Static
D

ecom
pile

r

W
eavin

g
A

ndroid
app

A
ndroid

O
S

A
pplic

atio
n

Availa
bili

ty

Summary

A
tt

ac
ks

DroidChameleon [57] x x NA

DroidChameleon is a systematic framework with various transformation techniques to measure the
resistant of anti-virus vendors against various common obfuscation techniques. The paper concludes
that none of the ten popular commercial anti-malware applications for Android are resistant against
common malware transformation techniques.

Orthacker et al. [51] x x NA

Orthacker et al. illustrate how two apps with different permission sets can complement each other by
using arbitrary communication channels to use each others capabilities (privilege escalation or confused
deputy attack).

R
ep

ac
ka

gi
ng

AppInk [76] x x x x NA

AppInk uses a dynamic graph based watermarking mechanism to detect and deter further propagation
of repackaged apps. It takes the source code of an app as input to automatically generate a new app
with a transparently-embedded watermark and a manifest app. The manifest app can later be used to
reliably recognize the embedded watermark.

DroidMOSS [75] x x x NA
DroidMoss is a similarity measurement system that applies a fuzzy hashing technique to effectively
localize and detect repackaged apps.

PiggyApp [77] x x x NA
PiggyApp is a fast and scalable approach to detect ‘piggybacked’ apps: legitimate apps that are repack-
aged by malicious authors with destructive payloads.

M
is

ce
lla

ne
ou

s

AndroidRipper [2] x x x open
AndroidRipper is an automated technique that tests Android apps via their GUI and is based on a
user-interface driven ripper that automatically explores the app’s GUI with the aim of exercising the
application in a structured manner.

Hu and Neamtiu [36] x x x x NA

Hu and Neamtiu present techniques for detecting GUI bugs by automatic generation of test cases,
feeding the application random events, instrumenting the VM, producing log/trace files and analyzing
them post-run.

PScout [3] x x x open
PScout is a tool that extracts the permission specifications from the Android OS source code using static
analysis. This information is used to overcome the incomplete documentation of Android’s permission
system.

RobotDroid [73] x x NA RobotDroid is a malware detection framework that uses SVM active learning algorithm.

SmartDroid [74] x x x x NA
SmartDroid is a prototype system that shows how to automatically and efficiently detect an app’s
UI-based trigger conditions that are required to expose the app’s sensitive behavior.

∗ These analysis platforms are closed source and do not come from scientific efforts. This means that we could not
obtain detailed information about their internal functioning.

6.3 Dynamic Analysis Platforms
In this section, we further explore existing dynamic analysis platforms and com-
pare their implementations against TraceDroid.

6.3.1 AASandbox
In October 2010, Bläsing et al. were the first to present a dynamic analysis
platform for Android applications: AASandbox (Android Application Sand-
box) [7]. It uses static analysis to scan software for malicious patterns and per-
forms dynamic analysis to intervene and log low-level interactions with the sys-
tem for further analysis by means of a loadable kernel module developed to ob-
tain system call logs. AASandbox uses a system call footprinting approach for
detecting suspicious applications. Unfortunately, there were no known Android
malware samples available at the time to evaluate this technique. AASandbox
seems to be unmaintained nowadays.

Compared to AASandbox, TraceDroid is implemented on a higher ab-
straction layer, namely the Dalvik VM instead of the Linux kernel. This allows
TraceDroid to retrieve great detail on executed Java components, while miss-
ing any native code execution paths. By using the strace utility, however, we
obtain a similar overview of executed system calls. We already use analysis
output to detect suspicious activity.

6.3.2 TaintDroid
Also in October 2010, Enck et al. presented TaintDroid: a modified Android
OS keeping track of taint propagation at runtime to detect privacy leaks [26].
Over time, it has been adopted as a valuable addition by many subsequent
research proposals which aim to perform dynamic analysis on Android appli-
cations. TaintDroid is implemented as a modification of the Dalvik VM and
thus cannot track taint within native code.

TaintDroid does not come with a set of scripts or applications to allow
automated analysis and stimulation of unknown applications and is thus quite
different compared to our TraceDroid platform. It does also not keep track
of any specific method invocations. What we could do, however, is extending
TraceDroid in such a way that it also keeps track of field operations, and use
this data to implement taint tracking functionality as a post-processing plug-in.

6.3.3 DroidBox
DroidBox was developed by Patrik Lantz as part of Google Summer of Code
(GSoC) 20113. It combines TaintDroid with modifications of Android’s core
libraries. The modified Android OS of DroidBox logs the following events during
runtime of an application:

• File read and write operations.
• Cryptography API activity.
• Opened network connections.
• Outgoing network traffic.
3http://www.honeynet.org/node/744

78

http://www.honeynet.org/node/744

• Information leaks through network, files or SMS messages (using Taint-
Droid).

• Attempts to send SMS messages.
• Phone calls that have been made.

It also provides visualization of analysis results and automated app installation
and execution.

TraceDroid differs from DroidBox in that our implementation traces
all method invocations, including those occurring within an application, while
DroidBox looks only at a small subset of API calls of which the developers
think are interesting. Our approach is beneficial, for example if malware authors
use third-party cryptographic libraries instead of the hooked APIs to encrypt
data. DroidBox operates on the core library level, while TraceDroid is
integrated at the Dalvik bytecode interpreter. This makes TraceDroid a
more suitable platform for detailed analysis of unknown applications. On top
of that, our TraceDroid Analysis Platform performs a more fine-grained
level of simulation techniques when compared with DroidBox.

A second version of DroidBox was developed by Kun Yang as part of GSoC
2012 and introduces an APIMonitor that uses bytecode rewriting instead of
core library modifications4. While this is a good approach to overcome the
need of continuously upgrading DroidBox to newer Android versions, rewriting
applications breaks an app’s original signature which can easily be detected at
runtime. Also, as with the first DroidBox release, the APIMonitor can
only monitor core API calls which results in a less comprehensive set of traced
method invocations than TraceDroid achieves.

Since DroidBox was the first openly available dynamic analysis platform
for Android, it has been used as a base system by many other dynamic analysis
platforms including Andrubis, Mobile-Sandbox, and SandDroid.

6.3.4 Bouncer
In February 2012, Google announced Bouncer [44]. It is stated that every
application that is offered for download in the Google Play Store is run on
Google’s cloud infrastructure and gets simulated as if it was running on an
Android device. Since Bouncer is used to protect the Google Play Store from
malicious applications, only sparse information was provided about its internal
functioning.

During Summercon in June 2012, however, Oberheide and Miller presented
their efforts on dissecting Bouncer [?]. Using a C&C application that connects
back to their local machine, they determined that Bouncer runs dynamic
analysis on applications for 5 minutes. They could setup a connect-back shell
to communicate with the application under investigation5 and were able to
obtain more detailed information on the environment used by Bouncer to run
analysis.

In October 2012, Google introduced an application verification service. With
the release of Android 4.2, the ACTION PACKAGE NEEDS VERIFICATION broadcast
was introduced, used by the OS to verify newly installed applications and check
them for known malware. During installation, the OS sends information about

4http://www.honeynet.org/node/940
5http://www.youtube.com/watch?v=ZEIED2ZLEbQ

79

http://www.honeynet.org/node/940
http://www.youtube.com/watch?v=ZEIED2ZLEbQ

the app (including its package name and its SHA1 hash) and the device (its
ID and IP address) to the Google cloud and requests a verification response.
Although not confirmed, the Google cloud likely uses Bouncer results to make
statements about the app’s safety. A study performed by Xuxian Jiang shows
that only 193 of the 1260 malgenome samples were detected as malicious by this
verification scheme, indicating a detection rate of only 15.32%6

6.3.5 Andrubis
In June 2012, the International Secure Systems Lab released Andrubis: a dy-
namic analysis platform for Android applications [42]. Andrubis was the first
to offer a publicly available web interface where users can submit Android ap-
plications for dynamic analysis. When analysis is finished, it generates a XML
report containing a behavioral and static analysis footprint of the requested ap-
plication. Its first release was based on DroidBox’s core library modifications
and was built on top of Android 2.1. Andrubis was later updated to run un-
der Android 2.3.4 and uses VMI to intercept system calls made by native code
execution.

With the integration of TraceDroid, Andrubis has become a very exten-
sive dynamic analysis platform that does not only track taint propagation to
detect privacy leaks, but also records invoked system calls and comprehensive
Java method traces. Due to our collaboration efforts, Andrubis has adopted
most of TraceDroid’s functionality.

6.3.6 DroidScope
First presented in August 2012, DroidScope is a comprehensive dynamic bi-
nary instrumentation tool for Android based on VM introspection [72]. It recon-
structs Dalvik instruction traces and this could, in theory, be used to obtain the
same results as we currently obtain with TraceDroid. The key difference be-
tween TraceDroid and DroidScope, however, is the fact that DroidScope
is bound to an emulator, while TraceDroid may run on actual hardware. Ma-
licious applications can detect the use of an emulator and may decide not to
start malicious activities in this scenario [55].

6.3.7 AppsPlayground
In February 2013, Rastogi et al. introduce AppsPlayground. Like previ-
ously discussed frameworks, AppsPlayground monitors taint propagation us-
ing TaintDroid, and traces specific Java API and system calls. Its main con-
tribution is an improved monkey exerciser-like execution approach to explore
application’s GUIs. The latter is something we would like to add to our Trace-
Droid Analysis Platform as well, as a mean to increase code coverage.

6.3.8 Mobile-Sandbox
Mobile-Sandbox was released in March 2013 and is very similar to Andrubis
in that it is based on DroidBox and uses TaintDroid to track taint propa-
gation [64]. Instead of VMI to trace system calls, however, Mobile-Sandbox

6http://www.cs.ncsu.edu/faculty/jiang/appverify

80

http://www.cs.ncsu.edu/faculty/jiang/appverify

uses a ported version of ltrace to trace native library invocations. This ltrace
binary may be a valuable addition to our TraceDroid analysis platform. Like
Andrubis, Mobile-Sandbox also allows users to submit Android applications
for analysis via a web application.

6.3.9 CopperDroid
Finally, in April 2013, Reina et al. introduced CopperDroid [58]. The mech-
anisms used in this system are similar to DroidScope as it also uses VMI to
collect system call information about analyzed applications. Reina et al. argue,
however, that CopperDroid points out how their system call-centric analysis
and stimulation techniques can comprehensively expose Android malware be-
haviors. CopperDroid also comes with a web interface where users can submit
unknown applications for analysis.

6.3.10 Closed frameworks
A number of additional dynamic analysis platforms have been implemented and
made available to the public via web applications. These frameworks, however,
come with very little documentation on how they operate which makes it hard
to make statements on any new approaches used by these implementations. It is
likely that these platforms use (modified versions of) existing tools like Droid-
Box, TaintDroid and Androguard to complement their dynamic analysis
engine. This is confirmed on SandDroid’s webpage, which states that it is
powered by both DroidBox and Androguard7. Example output reports of
both ForeSafe8 and JoeSecurity9 suggest that these platforms use a com-
bination of existing tools as well.

7http://sanddroid.xjtu.edu.cn
8http://www.foresafe.com
9http://www.apk-analyzer.net

81

http://sanddroid.xjtu.edu.cn
http://www.foresafe.com
http://www.apk-analyzer.net

Chapter 7

Conclusions

In this chapter, we outline our conclusions regarding dynamic analysis of An-
droid malware. We first propose a set of future research efforts in Section 7.1,
followed by a conclusive overview of our contributions in Section 7.2.

7.1 Future Work
In this section, we first discuss some future research directions that relate to
TraceDroid and the TraceDroid Analysis Platform in particular in Sec-
tions 7.1.1 and 7.1.2. We outline notes regarding future research work on the
field of Android malware in general in Section 7.1.3.

7.1.1 TraceDroid
Although our Android OS modifications that enables us to generate comprehen-
sive method traces of Android applications are performing exceptionally well
already, there are a number of additional features conceivable that will enhance
the quality of analysis results.

Array unpacking

As with most programming languages, Java has the notion of array data struc-
tures which can be passed to or returned by invoked methods. TraceDroid
does currently not ‘unfold’ these arrays but rather prints the array’s toString()
return value which often only contains the address in memory of where the data
structure is located. While this may be sufficient to understand the control flow
of an application, there are cases in which array unpacking reveals interesting
details about an app’s implementation.

One of the scenarios in which array unpacking is desired is when an app
uses reflection. Reflection gives a developer the ability to examine and modify
the structure and behavior of objects at runtime and can be used to obfuscate
program code. Consider the example program depicted in Listing 7.1a of an
Android application that uses reflection to lookup and invoke Android’s Log.i
function. The program’s (partial) trace output is depicted in Listing 7.1b.

From Listing 7.1b we conclude that arguments passed to android.util.Log.i()
are lost as they were stored in an Object array. If we could unpack the String

82

Listing 7.1: Android application using reflection

(a) Source

package com. example . example2 ;

import android .os. Bundle ;
import android .app. Activity ;
import java.lang. reflect . Method ;

public class MainActivity extends Activity {

protected void onCreate (Bundle b) {
super . onCreate (b);

try {
/* Search for Android log class */
Class c = Class . forName (" android .util.Log");

/* Create a parameter type array for method i */
Class [] targs = { String .class , String . class };

/* Get method android .util.Log.i(String tag , String msg) */
Method m = c. getMethod ("i", targs);

/* Create a parameter array */
String [] args = {" Hello ", " World "};

/* invoke android .util.Log.i(" Hello ", " World ") */
m. invoke (null , (Object []) args);

} catch (Exception e) {
e. printStackTrace ();

}
}

}

(b) Trace output

...
public static java.lang. Class java.lang. Class . forName ((java.lang. String) " android .util.Log")
return (java.lang. Class) " class android .util.Log"
public java.lang. reflect . Method java.lang. Class (" class android .util.Log").

getMethod ((java.lang. String) "i", (java.lang. Class []) "[Ljava .lang. Class ; @40519d38 ")
return (java.lang. reflect . Method)

" public static int android .util.Log.i(java.lang.String ,java.lang. String)"
public java.lang. Object java.lang. reflect . Method (

" public static int android .util.Log.i(java.lang.String ,java.lang. String)").
invoke ((java.lang. Object) "null", (java.lang. Object []) "[Ljava .lang. String ; @4051bc10 ")

return (java.lang. Object) "13"
..

array at memory address 0x4051bc10, we would find the original ["Hello","World"]
array.

Reflection is an effective methodology for malicious authors to protect their
malware against static analysis: by encrypting strings that contain the Android
API classes and methods and decrypting them at runtime, static analysis tools
will fail to detect suspicious API invocations. The OBad sample is an example

83

of malware that uses reflection to hinder analysis [66].
It must be noted that above reflection issues could also be fixed by tracing

Dalvik’s core library: the java.lang.reflect.Method.invoke() implementa-
tion will eventually invoke the target method with the original parameter struc-
ture. We miss this invocation in our trace file since the invoked target method
does not originate from the targeted application but from the core library, and,
as outlined in Section 4.1.1, we do not trace function calls within the OS if they
do not originate from the target app. Object unpacking would still be a valuable
addition however, as attackers could otherwise go into stealth mode by packing
their internal function parameters into array data structures.

Another interest of array unpacking lies in reconstructing byte sequences that
are used during I/O operations. Whenever such operation is initiated, concerned
data is often passed as a byte array. Unpacking these arrays will allow us to
fully reconstruct I/O operations, like, for instance, the exact sequence of bytes
that are written to disk during a write invocation.

To add array unpacking to TraceDroid, we can use Dalvik’s existing
ArrayObject structure which represents a Java array in C. We would first have
to cast variables containing arrays to an ArrayObject and then loop over it to
print its contents.

Tracing field operations A more complex feature would be adding the ca-
pability to trace all interpreted Dalvik bytecode. Such feature would allow
us to not only trace method invocations, but also reconstruct loops (while,
do...while, for), keep track of operations involving operators (=, +, -, . . .) and
trace decision making statements (if...then, if...then...else, switch), all
at runtime. With this, we could try to reconstruct original source code that
gives us an ever better overview of how the app functions internally.

To add this feature to TraceDroid, we would have to modify the Dalvik
interpreter in such a way that each executed instruction is printed to one of our
output files.

Porting The current version of TraceDroid is built on top of Android 2.3.4
(codename Gingerbread), released in April 2011. Until recently the majority of
Android devices was still running Gingerbread. The last few months, however,
we see that Jelly Bean (Android 4.1.x – 4.3.x) is taking over this position with a
combined market share of over 40%1 (on August 1, 2013). Porting TraceDroid
to newer Android releases is important to maintain support for apps that make
use of recently introduced API functions. A quick look at the Android 4.3
source code shows that no fundamental changes were made to Android’s profiler
implementation and that porting TraceDroid will be relatively easy.

Prevent evasion techniques We mentioned earlier that applications can
detect if they are executed within an emulated environment [48]. Malware
authors can use detection techniques to decide not to start malicious activities
whenever their application is analyzed within such surroundings. Some of the
techniques can easily be obstructed by modifying specific system variables within
qemu, however, preventing all of them will be near to impossible to accomplish2.

1http://developer.android.com/about/dashboards/index.html
2http://dexlabs.org/blog/btdetect

84

http://developer.android.com/about/dashboards/index.html
http://dexlabs.org/blog/btdetect

We therefore propose a scheme wherein we use an actual device installed with
a TraceDroid-based firmware image so that we can use real hardware to
test questionable applications. As with porting, building the Android source
for devices is a straightforward process, especially when using a Google’s Nexus
phone as target as instructions for building firmwares for these devices are listed
on Android’s webpage3.

Aside from emulator evasion techniques, we also have to take time scheduled
actions into consideration. To prevent automated detection during an analysis
session, an app may decide not to start malicious activity until a certain amount
of time has passed. We should look for possibilities to detect these scheduled
events and try to somehow invoke the scheduled action anyway. We could, for
instance, hook specific API calls and change alarm timings at runtime. This
would, however, not prevent against a scheme wherein computational effort (e.g.,
an almost endless loop) is used to postpone an app’s activity. More research is
necessary to prevent against these type of evasion as well.

7.1.2 TraceDroid Analysis Platform
Our analysis platform that stimulates applications and is responsible for post-
processing TraceDroid output could also be further improved. We now outline
a number of further research directions involving our TraceDroid Analysis
Platform.

Malware detection Using our extensive feature set plug-in, we would like
to have another post-processing script that uses a machine learning technique
to classify unknown applications and detect new malware. A preliminary test
case consisting of about 300 malware and 200 benign applications already shows
that we can obtain a detection rate of about 93% to 96% (measured as F -Score:
combined true positives and true negatives), which is a good prospect for future
work.

Code coverage An easy addition to the TraceDroid Analysis Platform
would be the separation of code coverage results on a per package basis. Since
third-party libraries are often packaged with a different package name than the
main application, such separation would give a more precise insight in how our
stimulations perform in terms of code coverage. Separation of code coverage
results per package also gives analysts a better insight into which packages are
of interest for further research: they could quickly dismiss known third-party
libraries and focus solely on the app’s implementation.

In addition, we also want to search for improved stimulation techniques to
increase code coverage of our analysis platform in general. We would like to use
the heuristic-based execution approach as outlined by Rastogi et al. in order to
better stimulate an app’s interfaces [56]. Another noteworthy approach would
be using symbolic execution on the Dalvik bytecode. For this, projects like
JavaPathFinder4 are of particular interest.

3http://source.android.com/source/building-devices.html
4http://babelfish.arc.nasa.gov/trac/jpf

85

http://source.android.com/source/building-devices.html
http://babelfish.arc.nasa.gov/trac/jpf

Taint tracking If we manage to implement full bytecode tracing in Trace-
Droid, we could use its output to reconstruct taint propagation during post-
analysis. We could use this to built a system similar to TaintDroid that
detects private data leaks, but also follows incoming data to detect malicious
code execution. Storing all executed operations gives us the advantage to check
taint propagation using two directions: forward and backward. Considering the
example of detecting data leaks, forward taint checking starts tracking variables
as soon as private data is first accessed. With backward taint tracking, we start
at potential sink access operations (file write, network write, etc.) and follow
the execution trace back to where data was first accessed. Using a combination
of both normal and backward taint analysis, we may be able to better detect
data leaks through implicit data flows.

Replaying Another feature that could be realized once full bytecode tracing
for TraceDroid is implemented, is a replay module that uses the traced (or
recorded) bytecode instructions to exactly replay an app’s execution for a second
time. Replay functionality may be of value to debug specific race conditions
that are otherwise hard to reproduce. To the best of our knowledge, replaying
Android applications has not been subject of research before. Related projects
that can replay Java applications are Chronon5 and RD/Recorder6.

7.1.3 Other research directions
We also identify a number of essential Android malware related research direc-
tions that are not explicit extensions of our current work. We briefly discuss
them in the following paragraphs.

SMS stealing protection On a defensive side, the Android OS needs a mech-
anism to protect users against SMS stealing malware, especially if mobile TAN
codes for secure banking transactions are involved. While Google could imple-
ment such feature easily by modifying the OS internally, we believe that it is
also possible to protect a user using regular applications. We already started
working on a prototype application that runs entirely in user-space and de-
tects applications that start network traffic shortly after a new SMS message
containing mTAN-like content arrived.

Awareness A more psychology based study is desired to determine why users
are tricked in installing malicious applications and how we can raise awareness
among consumers. To the best of our knowledge, no mobile malware is currently
capable of installing itself without a user’s consent, which means that malware
gets distributed using only social engineering techniques. It is important to
understand the psychology of affected consumers so that we can direct research
towards this particular problem.

5http://chrononsystems.com
6http://www.replaysolutions.com/products/recorder

86

http://chrononsystems.com
http://www.replaysolutions.com/products/recorder

7.2 Conclusions
The high pace of which mobile malware is being spread among Android devices,
calls for a new approach to quickly analyze and detect previously unknown mal-
ware families. In Chapter 4, we have presented the TraceDroid Analysis
Platform, a platform for automated dynamic analysis of unknown Android ap-
plications using a comprehensive method tracing scheme dubbed TraceDroid.
For each application, the platform can generate a feature set containing suspi-
cious activities triggered during the app’s execution run. One can use these
analysis results to detect new malware samples of known families or suspicious
applications that require a more in-depth analysis and may belong to a pre-
viously unknown malware class. In any case, our proposed framework directs
scarce analysis resources towards applications that have the greatest potential
of being malicious.

In addition to our work relating to dynamic analysis of Android applications,
we have also provided a comprehensive systematization of knowledge study in
which we classify and summarize a large number of research projects focusing
on Android security in general in Chapter 6.

7.2.1 TraceDroid
With TraceDroid, we have integrated a comprehensive method tracer into the
existing Android OS source code. Upon each method invocation, we obtain the
method’s complete signature, its object’s toString() representation (if any)
and a list of parameters passed to the method. Upon return statements, we
display the function’s return value or, in case of an exception, the exception
object that is thrown to the caller. For parameters or return values that are
non-primitive, we invoke the object’s toString() function in order to obtain a
textual representation of the item in question. In addition, we keep track of a
function’s call depth and also include timestamps in our log output. Benchmark
results show that our implementation gains an almost 50% speedup compared
to Android’s original profiler.

Although TraceDroid was originally developed to aid only malware or
anti-virus researchers in reconstructing malicious instruction traces using dy-
namic analysis, its user base can be extended to include developers and reverse
engineers as well. Developers can use TraceDroid as a replacement for the
original Android profiler. TraceDroid is not only faster but also reveals a
more detailed overview of invoked functions while omitting uninteresting inter-
nal OS invocations. Reverse engineers can use TraceDroid in combination
with static analysis tools to quickly reverse an app’s implementation.

7.2.2 TraceDroid Analysis Platform
The TraceDroid Analysis Platform is a framework for automated analy-
sis of applications using dynamic analysis. We implemented a number of post-
processing plug-ins including a code coverage computation script and a feature
extraction tool. Using the code coverage plug-in, we conclude that our stimu-
lation engine gains an average code coverage during dynamic analysis of about
33%. A preliminary study on detecting malware using the extracted features

87

show a detection rate of 93% – 96%. Our platform can thus be extended to
quickly identify suspicious Android applications that are likely to be malicious.

In order to aid complementary manual analysis on TraceDroid’s method
trace output, we provide a sophisticated inspection tool that parses Trace-
Droid’s output into Python objects and gives the user an interactive shell to
perform in-depth analysis. Using this utility, an analyzer can generate a call
graph of analyzed applications containing an overview of all invoked methods
and their call chain, while they are grouped into clusters based on their belong-
ing classes. The call graph helps analysts to quickly understand control flow
paths within applications and aid further analysis. In Section 5.5, we demon-
strated how our tool can be used to dissect a malicious application.

Our framework is highly flexible and allows analysts to write additional post-
processing plug-ins using our provided interface. This gives analysts the power
to add specific features based on TraceDroid’s method trace output.

88

Bibliography

[1] Kindsight Security Labs Malware Report - Q2 2013. Alcatel-Lucent, Jul.
2013.

[2] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salva-
tore De Carmine, and Atif M. Memon. Using GUI Ripping for Automated
Testing of Android Applications. In Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering (ASE), Sep.
2012.

[3] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. PScout:
Analyzing the Android Permission Specification. In Proceedings of the 19th
ACM Conference on Computer and Communications Security (CCS), Oct
2012.

[4] Guangdong Bai, Liang Gu, Tao Feng, Yao Guo, and Xiangqun Chen.
Context-Aware Usage Control for Android. In Proceedings of the 6th In-
ternational ICST Conference on Security and Privacy in Communication
Networks (SecureComm), Sep. 2010.

[5] Michael Becher, Felix C. Freiling, Johannes Hoffmand, Thorsten Holz, Se-
bastian Uellenbeck, and Christopher Wolf. Mobile Security Catching Up?
Revealing the Nuts and Bolts of the Security of Mobile Devices. In Proceed-
ings of the 32nd Annual IEEE Symposium on Security and Privacy (S&P),
May. 2011.

[6] Alastair R. Beresford, Andrew Rice, Nicholas Skehin, and Ripduman So-
han. MockDroid: trading privacy for application functionality on smart-
phones. In Proceedings of the 12th Workshop on Mobile Computing Systems
and Applications (HotMobile), Mar. 2011.

[7] Thomas Bläsing, Leonid Batyuk, Aubrey-Derrick Schmidt, Seyit Ahmet
Camtepe, and Sahin Albayrak. An Android Application Sandbox System
for Suspicious Software Detection. In Proceedings of the 5th International
Conference on Malicious and Unwanted Software (MALWARE), Oct. 2010.

[8] Dan Bornstein. Dalvik VM Internals. Google I/O, May 2008.

[9] Stefan Brähler. Analysis of the Android Architecture, Oct. 2010.

[10] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, and
Ahmad-Reza Sadeghi. XManDroid: A New Android Evolution to Miti-
gate Privilege Escalation Attacks. Technical report, Technische Universität
Darmstadt, Apr. 2011.

89

[11] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. Crowdroid:
Behavior-Based Malware Detection System for Android. In Proceedings
of the 1st Annual ACM CCS workshop on Security and Privacy in Smart-
phones and Mobile Devices (SPSM), Oct. 2011.

[12] Over 1 billion Android-based smart phones to ship in 2017. Canalys, Jun.
2013.

[13] Francesco Di Cerbo, Andrea Girardello, Florian Michahelles, and Svetlana
Voronkova. Detection of malicious applications on Android OS. In Pro-
ceedings of the 4th International Conference on Computational forensics
(IWCF), Nov. 2011.

[14] Saurabh Chakradeo, Bradley Reaves, Patrick Traynor, and William Enck.
MAST: Triage for Market-scale Mobile Malware Analysis. In Proceedings of
the 6th ACM Conference on Security and Privacy in Wireless and Mobile
Networks (WISEC), Apr. 2013.

[15] Patrick P.F. Chan, Lucas C.K. Hui, and S.M. Yiu. DroidChecker: Ana-
lyzing Android Applications for Capability Leak. In Proceedings of the 5th
ACM Conference on Security and Privacy in Wireless and Mobile Networks
(WISEC), Apr. 2012.

[16] Kevin Zhijie Chen, Noah Johnson, Vijay D’Silva, Shuaifu Dai, Kyle Mac-
Namara, Tom Magrino, Edward Wu, Martin Rinard, and Dawn Song. Con-
textual Policy Enforcement in Android Applications with Permission Event
Graphs. In Proceedings of the 20th Annual Network & Distributed System
Security Symposium (NDSS), Feb. 2013.

[17] Eric Chien. Motivations of Recent Android Malware. Symantec Security
Response, Oct. 2011.

[18] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Marcel
Winandy. Privilege escalation attacks on android. In Proceedings of the
13th Information Security Conference (ISC), Oct. 2010.

[19] Benjamin Davis, Ben Sanders, Armen Khodaverdian, and Hao Chen. I-
ARM-Droid: A Rewriting Framework for In-App Reference Monitors for
Android Applications. Mobile Security Technologies (MoST), May 2012.

[20] Anthony Desnosi and Geoffroy Gueguen. Android: From Reversing to
Decompilation. In Proceedings of Black Hat Abu Dhabi, Dec. 2011.

[21] Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu, and Dan S. Wal-
lach. QUIRE: Lightweight Provenance for Smart Phone Operating Systems.
In Proceedings of the 20th USENIX Security Symposium, Aug. 2011.

[22] David Ehringer. The Dalvik Virtual Machine Architecture, Mar. 2010.

[23] William Enck. Defending Users against Smartphone Apps: Techniques and
Future Directions. In Proceedings of the 7th International Conference on
Information Systems Security (ICISS), Dec. 2011.

90

[24] William Enck, Machigar Ongtang, and Patrick McDaniel. On Lightweight
Mobile Phone Application Certification. In Proceedings of the 16th ACM
Conference on Computer and Communications Security (CCS), Nov. 2009.

[25] William Enck, Machigar Ongtang, and Patrick McDaniel. Understanding
Android Security. IEEE Security & Privacy, 7(1), Feb. 2009.

[26] William Enck, Peter Gilbert, Byung-Gon Chunn, Landon P. Cox, Jaeyeon
Jung, Patrick McDaniel, and Anmol N. Sheth. TaintDroid: An
Information-Flow Tracking System for Realtime Privacy Monitoring on
Smartphones. In Proceedings of the 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Oct. 2010.

[27] William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaud-
huri. A Study of Android Application Security. In Proceedings of the
20th USENIX Security Symposium, Aug. 2011.

[28] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David
Wagner. Android Permissions Demystified. In Proceedings of the 18th
ACM Conference on Computer and Communications Security (CCS), Oct.
2011.

[29] Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steven Hanna, and
David Wagner. A Survey of Mobile Malware in the Wild. In Proceed-
ings of the 1st Annual ACM CCS workshop on Security and Privacy in
Smartphones and Mobile Devices (SPSM), Oct. 2011.

[30] FortiGuard Midyear Threat Report. Fortinet, Aug. 2013.

[31] Adam P. Fuchs, Avik Chaudhuri, and Jeffrey S. Foster. SCanDroid: Au-
tomated Security Certification of Android Applications. Technical report,
University of Maryland, Nov. 2009.

[32] Tal Garfinkel and Mendel Rosenblum. A Virtual Machine Introspection
Based Architecture for Intrusion Detection. In Proceedings of the 10th
Annual Network & Distributed System Security Symposium (NDSS), Feb.
2003.

[33] Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian Jiang.
RiskRanker: Scalable and Accurate Zero-day Android Malware Detection.
In Proceedings of the 10th International Conference on Mobile Systems,
Applications, and Services (MOBISYS), Jun. 2012.

[34] The Hindu. UAB computer forensics links internet postcards to
virus. http://www.hindu.com/thehindu/holnus/008200907271321.htm,
Jul. 2009.

[35] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, and
David Wetherall. “These Aren’t the Droids You’re Looking For”
Retrofitting Android to Protect Data from Imperious Applications. In Pro-
ceedings of the 18th ACM Conference on Computer and Communications
Security (CCS), Oct. 2011.

91

http://www.hindu.com/thehindu/holnus/008200907271321.htm

[36] Cuixiong Hu and Iulian Neamtiu. Automating GUI testing for Android ap-
plications. In Proceedings of the 6th International Workshop on Automation
of Software Test (AST), May 2011.

[37] Xuxian Jiang. An Evaluation of the Application (”App”) Verifica-
tion Service in Android 4.2. http://www.cs.ncsu.edu/faculty/jiang/
appverify, Dec. 2012.

[38] Third Annual Mobile Threats Report. Juniper Networks, Jun. 2013.

[39] Eran Kalige and Darrel Burkey. A Case Study of Eurograbber: How 36
Million Euros was Stolen via Malware, Dec. 2012.

[40] Ramnivas Laddad. AspectJ in Action, Practical Aspect-Oriented Program-
ming. Manning Publications, 2003.

[41] Patrik Lantz. DroidBox, Feb. 2011.

[42] Martina Lindorfer. Andrubis: A Tool for Analyzing Unknown
Android Applications. http://blog.iseclab.org/2012/06/04/
andrubis-a-tool-for-analyzing-unknown-android-applications-2,
June 2012.

[43] Ramon Llamas, Ryan Reith, and Michael Shirer. Apple Cedes Market
Share in Smartphone Operating System Market as Android Surges and
Windows Phone Gains, According to IDC. http://www.idc.com/getdoc.
jsp?containerId=prUS24257413, Aug. 2013.

[44] Hiroshi Lockheimer. Android and Security. http://googlemobile.
blogspot.nl/2012/02/android-and-security.html, Feb. 2012.

[45] Christopher Mann and Artem Starostin. A Framework for Static Detection
of Privacy Leaks in Android Applications. In Proceedings of the 27th Annual
ACM Symposium on Applied Computing (SAC), Mar. 2012.

[46] Denis Maslennikov. Zeus-in-the-Mobile — Facts and Theories. http://
www.securelist.com/en/analysis/204792194, Oct. 2011.

[47] Mohammad Nauman, Sohail Khan, and Xinwen Zhang. Apex: Extending
Android Permission Model and Enforcement with User-defined Runtime
Constraints. In Proceedings of the 5th ACM Symposium on Information,
Computer and Communications Security (ASIACCS), Apr. 2010.

[48] Jon Oberheide and Charlie Miller. Dissecting the Android Bouncer, Jun.
2012.

[49] Damien Octeau, Somesh Jha, and Patrick McDaniel. Retargeting Android
Applications to Java Bytecode. In Proceedings of the 20th International
Symposium on the Foundations of Software Engineering (SIGSOFT), Nov.
2012.

[50] Machigar Ongtang, Stephen McLaughlin, William Enck, and Patrick Mc-
Daniel. Semantically Rich Application-Centric Security in Android. In
Proceedings of the 25th Annual Computer Security Applications Conference
(ACSAC), Dec. 2009.

92

http://www.cs.ncsu.edu/faculty/jiang/appverify
http://www.cs.ncsu.edu/faculty/jiang/appverify
http://blog.iseclab.org/2012/06/04/andrubis-a-tool-for-analyzing-unknown-android-applications-2
http://blog.iseclab.org/2012/06/04/andrubis-a-tool-for-analyzing-unknown-android-applications-2
http://www.idc.com/getdoc.jsp?containerId=prUS24257413
http://www.idc.com/getdoc.jsp?containerId=prUS24257413
http://googlemobile.blogspot.nl/2012/02/android-and-security.html
http://googlemobile.blogspot.nl/2012/02/android-and-security.html
http://www.securelist.com/en/analysis/204792194
http://www.securelist.com/en/analysis/204792194

[51] Clemens Orthacker, , Peter Teufl, Stefan Kraxberger, Günther Lackner,
Michael Gissing, Alexander Marsalek, Johannes Leibetseder, and Oliver
Prevenhueber. Android security permissions - can we trust them? In
Proceedings of the 3rd International Conference on Security and Privacy in
Mobile Information and Communication Systems (MOBISEC), Jun. 2011.

[52] Rahul Pandita, Xusheng Xiao, Wei Yang, Willieam Enc, and Tao Xie.
WHYPER: Towards Automating Risk Assessment of Mobile Applications.
In Proceedings of the 22nd USENIX Security Symposium, Aug. 2013.

[53] Étienne Payet and Fausto Spoto. Static analysis of Android programs.
Information and Software Technology, 54(11), Jun. 2012.

[54] Georgios Portokalidis, Philip Homburg, Kostas Anagnostakis, and Herbert
Bos. Paranoid android: versatile protection for smartphones. In Proceedings
of the 26th Annual Computer Security Applications Conference (ACSAC),
Dec. 2010.

[55] Thomas Raffetseder, Christopher Krügel, and Engin Kirda. Detecting sys-
tem emulators. In Proceedings of the 10th Information Security Conference
(ISC), Oct. 2007.

[56] Vaibhav Rastogi, Yan Chen, and William Enck. AppsPlayground: Au-
tomatic Security Analysis of Smartphone Applications. In Proceedings of
the 3rd ACM conference on Data and Application Security and Privacy
(CODASPY), Feb. 2013.

[57] Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. DroidChameleon: Evaluat-
ing Android Anti-malware against Transformation Attacks. In Proceedings
of the 8th ACM Symposium on Information, Computer and Communica-
tions Security (ASIACCS), May 2013.

[58] Alessandro Reina, Aristide Fattori, and Lorenzo Cavallaro. A System Call-
Centric Analysis and Stimulation Technique to Automatically Reconstruct
Android Malware Behaviors. In Proceedings of the 6th European Workshop
on System Security (EUROSEC), Apr. 2013.

[59] Giovanni Russello, Bruno Crispo, Earlence Fernandes, and Yury Zhau-
niarovich. YAASE: Yet Another Android Security Extension. In Proceed-
ings of the 3rd International Conference on Social Computing (SocialCom),
Oct. 2011.

[60] Bhaskar Pratim Sarma, Ninghui Li, Chris Gates, Rahul Potharaju, Cristina
Nita-Rotaru, and Ian Molloy. Android Permissions: A Perspective Com-
bining Risks and Benefits. In Proceedings of the 17th ACM Symposium on
Access Control Models and Technologies (SACMAT), Jun. 2012.

[61] Aubrey-Derrick Schmidt, Hans-Gunther Schmidt, Jan Clausen, Kamer Ali
Yüksel, Osman Kiraz, Ahmet Camtepe, and Sahin Albayrak. Enhancing
Security of Linux-based Android Devices. In Proceedings of the 15th Inter-
national Linux System Technology Conference, Oct. 2008.

93

[62] Asaf Shabtai, Yuval Fledel, Uri Kanonov, Yuval Elovici, Shlomi Dolev, and
Chanan Glezer. Google Android: A Comprehensive Security Assessment.
IEEE Security & Privacy, 8(2), Apr. 2010.

[63] Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer, and Yael Weiss.
“andromaly”: a behavioral malware detection framework for android de-
vices. Journal of Intelligent Information Systems, 38(1), 2012.

[64] Michael Spreitzenbarth, Felix Freiling, Florian Echtler, Thomas Schreck,
and Johannes Hoffmann. Mobile-Sandbox: Having a Deeper Look into
Android Applications. In Proceedings of the 28th Annual ACM Symposium
on Applied Computing (SAC), Mar. 2013.

[65] TrendLabs 2Q 2013 Security Roundup. Trend Micro, Aug. 2013.

[66] Roman Unucheck. The most sophisticated Android Trojan. http:
//www.securelist.com/en/blog/8106/The_most_sophisticated_
Android_Trojan, Jun. 2013.

[67] Timothy Vidas, Daniel Votipka, and Nicolas Christin. All Your Droid Are
Belong to Us: A Survey of Current Android Attacks. In Proceedings of the
5th USENIX Workshop on Offensive Technologies (WOOT), Aug. 2011.

[68] Christina Warren. Google Play Hits 1 Million Apps. http://mashable.
com/2013/07/24/google-play-1-million, Jul. 2013.

[69] Cui Xiang, Fang Binxing, Yin Lihua, Liu Xiaoyi, and Zang Tianning. And-
bot: Towards Advanced Mobile Botnets. In Proceedings of the 4th USENIX
Workshop on Large-Scale Exploits and Emergent Threats (LEET), Mar.
2011.

[70] Pan Xiaobo. dex2jar, Oct. 2012.

[71] Rubin Xu, Hassen Säıdi, and Ross Anderson. Aurasium: Practical Policy
Enforcement for Android Applications. In Proceedings of the 21st USENIX
Security Symposium, Aug. 2012.

[72] Lok Kwong Yan and Heng Yin. DroidScope: Seamlessly Reconstructing the
OS and Dalvik Semantic Views for Dynamic Android Malware Analysis.
In Proceedings of the 21st USENIX Security Symposium, Aug. 2012.

[73] Min Zhao, Tao Zhang, Fangbin Ge, and Zhijian Yuan. RobotDroid: A
Lightweight Malware Detection Framework On Smartphones. Journal of
Networks, 7(4), Apr. 2012.

[74] Cong Zheng, Shixiong Zhu, Shuaifu Dai, Guofei Gu, Xiaorui Gong, Xinhui
Han, and Wei Zou. SmartDroid: an Automatic System for Revealing UI-
based Trigger Conditions in Android Applications. In Proceedings of the
2nd Annual ACM CCS Workshop on Security and Privacy in Smartphones
and Mobile Devices (SPSM), Oct. 2012.

[75] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. Detecting Repack-
aged Smartphone Applications in Third-Party Android Marketplaces. In
Proceedings of the 2nd ACM Conference on Data and Application Security
and Privacy (CODASPY), Feb. 2012.

94

http://www.securelist.com/en/blog/8106/The_most_sophisticated_Android_Trojan
http://www.securelist.com/en/blog/8106/The_most_sophisticated_Android_Trojan
http://www.securelist.com/en/blog/8106/The_most_sophisticated_Android_Trojan
http://mashable.com/2013/07/24/google-play-1-million
http://mashable.com/2013/07/24/google-play-1-million

[76] Wu Zhou, Xinwen Zhang, and Xuxian Jiang. AppInk: Watermarking
Android Apps for Repackaging Deterrence. In Proceedings of the 8th
ACM Symposium on Information, Computer and Communications Secu-
rity (ASIACCS), May 2013.

[77] Wu Zhou, Yajin Zhou, Michael Grace, Xuxian Jiang, and Shihong Zou.
Fast, Scalable Detection of “Piggybacked” Mobile Applications. In Pro-
ceedings of the 3rd ACM Conference on Data and Application Security and
Privacy (CODASPY), Feb. 2013.

[78] Yajin Zhou and Xuxian Jiang. Dissecting Android Malware: Characteri-
zation and Evolution. In Proceedings of the 33rd Annual IEEE Symposium
on Security and Privacy (S&P), May 2012.

[79] Yajin Zhou, Xinwen Zhang, Xuxian Jiang, and Vincent W. Freeh. Taming
Information-Stealing Smartphone Applications (on Android). In Proceed-
ings of the 4th International Conference on Trust and Trustworthy Com-
puting (TRUST), Jun. 2011.

[80] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey, You, Get Off of
My Market: Detecting Malicious Apps in Official and Alternative Android
Markets. In Proceedings of the 19th Annual Network & Distributed System
Security Symposium (NDSS), Feb. 2012.

95

Appendices

96

Appendix A

Sample Set

Table A.1 enumerates the 250 MD5 hashes of the benign sample set used in this
thesis. For each sample, the corresponding package name is listed.

Table A.1: Benign sample set
MD5 hash Package name

03aaf04fa886b76303114bc430c1e32c com.lftechs.tictactoe.free
05736b33323671617d51a785d15771dd com.alcove.cch
08047cfe0af0abfd91e0654fea03b329 com.yschi.MyAppSharer
0865a0b86f51cd8f17e35d68db4340e0 com.logmein.joinme
09d23c757d9d53b86c6d64e1a37ec892 com.iviewsoftware.pballFree
0abf92e77bb83c8b8419a2653c2d0027 com.oziapp.BirdHuntingLite
0f0b9ff3a870435b36d91471b95f47dc com.putitonline.da
109e2b0ece8353cd63af25e922064128 com.ninja.ume.u1310978874968
1123a5ae27124deb5457b44d2bdc44de com.etc.android.ecs
123858dcd9ca21c39a345ce0aa640301 com.app.grandag.trackchecker
128a971ff90638fd7fc7afca31dca16b com.appspot.yongSubway NZ
12b7a4873a2adbd7d4b89eb17d57e3aa com.brightai.middlesboroguide
12dc6496fdd54a9df28d991073f26749 com.via3apps.sensacio142
1390e4fecca9888cdf0489c5fe717839 com.rpg90.seasons cn
159958c76f9420d6775c5e54f7927e83 dalmax.games.arcade.jewels
15b241c73da676396fe73b26f5d89cf9 com.mycity247.mycity247
173fecb584d89da296fa0d0f5fb9a361 com.dogmac.F1News
1896912ab21677abb6f2031ccc687275 com.dreamtree.graffiti3dwallpapers
1b2ce824eec68a130f87f473a06aa16e net.thekillerapp.superbonus
1b49f3b87d320fee118888dc909cda57 com.allucanapp.wine.free
1cd841e49559c033fab5712c33a8c089 com.demansol.lostinjungle.lite.activities
1ce477618558d152b4098c06b81e3dbf com.picobrothers.vibrate
1f7096875a52c8ff4298b647fd440ac7 com.CastleApp.NutritionTips
1f7dcb54d2f961ba9573ddf43410ba76 mem.usage
1fb62027840784f071c19ae564d8a5bd com.bovello.autoprofileswitcher
22491ea22fe391043a4b69990c363320 com.kauf.jokes.account1.FunnyAnimalJokes
235bbed0eb7ef2ca42aaa51dd218c7c2 com.klervi.velivert
262d6f79f3ca4946b8873fe81dda1ba4 de.nuromedia.android.talkingfriends Free
26832755a721b66ecc76b3c0bf34203c com.xxt.megoogle
27a53676e4f7326a74025f11b7c27e8b bdmobile.android.app
287fa8f0a67688556307fb10a33720ab forzaCesena.apexnet.it
298a6843d024992202696c9428f6fcdb com.lcb.android.book.TheGirlwiththeDragonTattoo
29bd6d7d71d5816bae98f5fb4b962cb7 com.fltom.FLDerrickRose
2a025fab3a79892fadad96009cd473ee com.zyquest.radio.kissfmlite
2a2feb80905eab1c6a35589b2d5c22e2 xdebugx.partyLightA

97

Benign sample set, continued
MD5 hash Package name

2af10ac63bc5a785b1022f7fbeb4d319 com.agargroove.zeitungenatfree
2c064012644066a5a31c3b0cb7ba67f6 org.majoobi.App.medicalnw
2d091785088eac16b241a2d7f44a152a com.boa.sheeptone
2e346c123e49b413ca7f3cf4823a1edf com.melicoapp.br.GuiaUpFree
2e76cffc61f9bb33e00a7674d2eba9bf com.wynonnajudd.droidradio
2f3115705af5b30148e597ab42388068 com.crwdpower.parkpatrol
3049c030821af3dac9946c70d057cdd9 laststand.lite
316cb193debbdb1ddf1f438cd24aeeab teq.QCustomShortcut
316d6281449251375b3fbebc3553274b psv.apps.expmanager
33ac8dc386342eb7ad42fb3b58b55042 com.kodexo.sheepbox
34c7d74f7210484375a9d1bb8e62f950 com.codeiv.PhotoBook.Free
357244a37e999de6c06bea26b1ae0e35 com.valleydevteam.Sprueche
35bf18b1eee1bf3ea47b0345f58c2eb5 com.theojoe.holidays
35db9c855f5a6457f616bdfa46b2a3b6 com.bzyg.diyicideqinmijiechu
35ff1318ab86b7ab5826c2f996f001fb plat.wallpaperlucky041706
365639e6d6a3f688a67a18f045dbf9aa com.gadgetmvp.gadget D39FB1CF 5FFC B2AB 7EC6 871233182BC0
36c9a20f844a94cbe22b1cb577ed454a zureus.amazon.buzz.gifts
3712f6ae08467be6ca3e9e5ba7005c87 com.warting.blogg.wis psvitalive feed nu
3731ae94aa3c6b8dd9fb13410c392805 com.nwave.android.CapViewer
37b8467ede1dc7e9ccba110536e51b42 fifteen.puzzle
37eacdc7366403eac3970124c3a3fc32 com.omgbutton
3a11d47f994ec85cfeff8e159de46c54 ynd.tapmadness
3a7764ad6a4fbd4b9b8a192c11c41034 jp.yyc.game.jumpman
3bba568226b7d8f997d97befc2981d7a com.kidsfun.matching.starjewels
3be20a7db30d3e5de6f72449a64aeeb2 DroidApp.RoamingBillboard
3c142c03c1e8c19fe951a8eab32fb1f2 com.quoord.androidcommunity.activity
3d63a65f2e7cb762b40fd1ff43671d7e moon.wallmar24m
3d6a85790de7cec5d1e35514d220e4f6 wall.bt.wp.P108
3eba106e83efef1fa9ba09b59debcc3f vistaworks.RoyalGorgeTravel
3f67e2e2d7a97b7717ebd8a0a9f15f1c com.shimada.biorhythm
3f796196f7bf6e1b4190fdf7cc4eb843 com.drinkowl
3fd054911ab1d99c44348b8208332caa com.yc360.college.smsu
40082ae16ffc68f2dd64bc5fb5cf5c71 com.dreamstep.wCalling
400e7f5b4549c5d05a4243b3c4a36525 spring.wallpaper031909
409d369c3cedc337e57cd5d80a600459 com.zlango.zms
41b9a5230978b86acf945d8560e2b573 com.beautifulgirl.sexyleg1
426d7919384bc78369513dc865186b30 com.monkeyfly.android.bubble.DominoTwinkleP2
42cc83bb1875dff17e623edb9ef4a505 com.jamesarchuleta.PortalSoundBoard
44c2baedb297e6fd2f80fe60a8f47cea mobi.news.minnesotatwins
450cfb30ce3215893b7ed8ec61e14811 org.muth.android.trainer demo pt
455b4d9d3112c4df996462195cdf01b5 com.sport.quiz.adzoone
4a996ef13068fa1c32de54dfa264fa97 com.crossfield.TheCrazyUFO
4c05e692d55616a0c5423b5ca25697ee com.mnemotime.android
4e26abc0d66ac6230180a7ec4f17f5d9 com.electricsheep.boussole
4e4a1e5bc3366e559c2052d76352ac72 personal.jhjeong.app.batterylite
4ec805846b0de93483c80d5a354bbe5a org.thibault.android.buzzphrase
4eefe607b18a89d82f5c778523ef4d8d silly.walljun23j
5292488dc10ee3e0c46cd91275994125 com.gamesoul.combadge
56036dd4c63cd319bc523a9010288f19 com.androidbeans.techcrunch
56228df12dabd96434a3f05187a15d6f com.tesyio.puzzle.numplace.vol1w
584621b557d913001d21eceb7a62e0ef com.advisorlynx.mobileadvisor.portfolio
58766f54865ff0138dd10b4f3777b7c5 com.dailystats.mlb.bluejays
59f37665e96d14fe7c2f8221af089cd7 com.telemaque.travel.discover canada
5ac46c265a27dc1be07ee4354da54524 com.hunghom.HDHHTHellokittyI
5bf2caabe9b0b5465eb553927f71e174 com.softmimo.android.connectfourfreeversion
5c040afa41c19ffdb9a418771112175d se.dou.LcboFinder
5c20397ff602711630c23c6b3f3d528d com.ccwilcox.bft
5d50f937b75d53aeb8187ee2c820edf5 net.jimblackler.quickcalendar
5e94ca83c40d783a5e5692a811bb7399 com.jjkim.gasprice.lite

98

Benign sample set, continued
MD5 hash Package name

5f66009d9758ec5c87880ca939c0d7e9 com.bipgeeks.riverwallpapers
6040aabca376575c88465b05b5e46b5c com.cyberactivities.guitarsquidfree
629a639dca4a7548587d5dcc78b9b2cd com.goeswin.powerballusa
643d60e3bcf99652e9066b0015bd6411 net.leieuncretino.beta.hockey
667388681573c6c9a3a0cb819f6dbbe6 com.bai.GeoAlarm
66ede98974ecdbfdca1f2d29f4edd54a com.polar.android.cbscgtaub
672b22efeb0503e673a9a4f3f05104d3 com.appspot.yongDriver US
673d999791ab6f7aac73b8df33d8c1ff com.art.star
674ac59a2449cc69bd2bec4e211ff0d3 com.appitise.shakerhills
687d6e671614530dae2643f2ea5ec9c1 com.aSoftDroid.turkey
692c1a4857bc36b36fd115ec0cbf3247 com.hs.app.millionairePotential
6a0c789ccc587bae6cd7303453850314 com.circlechart
6b198b3d161f35b02a2ecb518e40b78d com.linewinner.free
6c27426db915511cba8aa770d3477f67 com.bh.android.MarketCommentsReader
6ca018f20d9c422eac91577f1440867f com.allesapps.puzzlebox.sexyabs
6d9244025e13db939ea448177cf58d47 jp.mapp.yusha
6e5c860a2eac50e1cccb164d8c4dbaba com.boa.megafartbutton
7017119b579e12991b4c6822fd06ff9d com.timeflies2010.android.journalmap
7131366d608d3ca9d9c236e6d305385d Sizep.yjh.pj
7253ad5262243a7fb9a1d16c6c9fcc9c com.mixzing.basic
72c9dc947fa2b0be0ce9cd40111e06d8 com.lcb.AHouseBoatOnTheStyx
73ec5587bc27d2c01fdeb9173cb50ee0 com.tearn.kcarib
74c4204c8edb99683aa9d401b2f0635e com.syborg.nathansnumbersfree
75bb0a4a8520f49f5422ddb992717227 com.dg.zeng
76a68d625eeb36017351da94c4b07161 com.oslwp.doraemon
76d507a7595b984677ef387654a3d809 info.androidx.workcalenf
7889a8f9d6544f64f6033aeca1648c26 com.fsellc.slidepuzzlepomeranian
79e1952fe498af968e2695806c7da8fa com.appastrophe.comics.comics people wolverine
7a02f8877ad4e0bf5792441dd63df05b de.radioland.mobile.radio.android
7a90582ec4dbd1069584285e93c86fe2 EnglishSongsTop100.ynot.com
7aa8e4ef50c0fc6ba2490551703dfcdc com.axant.domenicali
7b4c48d21962774df434aea2d41f9060 com.omerfarukozdemir.mustafakemalataturk
7b64878d7757e06fa76756c72268886b com.appulearn.musictrivia.android
7b949dcd5d61bcde2e2391e2cefc98b2 mkoss.android.biorythms
7bb2974d249c8bc0210270b04ef6b925 com.mrselected.bellyeraser.lifestyle
7cc24c499be65b980798638781a9ae02 com.zlatkoStamatov.quiz.vampireDiaries
7d242f03c64e17857fad2c6d8b451a50 com.bytesequencing.android.dominoes.free
7e3826872081c4799fc6f7cdc6adb7d1 com.kdrv.android.weather
7e4ae99fd204659d06319466e60a715e com.jhjo.ringtone
7e7906b032d387d50da959567210a7f0 statsheet.statblogs.GopherBall
802d5eb74b3109778e04e847aa072735 com.appmakr.app221215
82d0ef403cb8138221739e4d59d8d06c com.dreamtree.littlekittywallpapers
837fcdee26accf3684188c89db06433b com.cellufun.launcher
849e9f7fc3e0a1ed06c93c0200c28d9c com.rovio.ume.u1311578526281
85a28a91483f8e62bdc26521615c5737 com.pubcircapps.makeyour756
85e2021b0f806880c5f388a93e68a6ff info.sabelan
86aec8695314ddec23cbca00ae12e6cf com.bhsoft.expensesfree
8745a1a0922f50604b2f9b68ce5ad56d de.sellfisch.jumping
8894d804bc859ffbb71e36c964855338 com.angryhippo.blip
897028ff3bd8ae4d00d1936953b4d012 com.nicripsia.otracking
89ef9998aede268ab154d1debd2ee869 com.linuxmobile.android.deeper
8bc342f2f238a65b0c26fa19e06f0dea com.fantasticapps.travelguiderotirgumures
8c52799325bc1a297685945135851614 com.walmacapps.setasringtone
8c57e562f2ee250084b1c808cd370941 com.popapp.poppic.chun
8d0364d9eefd77b0b80a6ab12577a86e net.notify.notifymdm
917770eccad83691a1db063128128215 com.victorvieux.android.convofy
917c8ef3111bb96cf75581a54ff8f93d eu.reply.sytelgmbh.android.PlateAnalyzer
91d77a38ca06a307723b10c006473ee8 com.gmail.jaggersoftware.antitheftalarm
934e932f1b1d78620e350460effa072c statsheet.statblogs.BusterBeat

99

Benign sample set, continued
MD5 hash Package name

9529da32aa2e674a6bbec241239781ac com.jayuins.movie.english.lite
9670c240cdcd1fb1bdb41afa9afaf6c6 flying.wallpaperlucky071207
9683fcdb2aa58e9496aee2e29e886aa2 com.backma386.puzzle
971ccdad781e34f246c7e49b27d90216 com.rcreations.amberalert
98d6c7a2413fc70fe5f928e4097b4225 com.blood.alcohol.level.calculator
9a4437cf405a034fda5f6b7c830ca993 statsheet.statblogs.HuskiesUpdate
9b67d404bf404f10b4db8cd1e95ce58a com.crossfield.waterrocket
9d1855a20eb2baac27597b1e558d7038 com.jpn.bestyle.kamehameha
9d5a2c834d7355ded9085b0d1ffd6cc6 com.moram.rtkfree
a092c6d948772510d98de178f0d8e5e5 com.bhpro.soundbankhealingfree
a137e3fcbc73c472cb5b2de6ed097479 com.lsn.localnews291
a1deafd88ba4b7939038d6ffade11c8f com.karmic.azenquotes
a38e5b2974acc72e77a866b9bb0e7bca com.f2fgames.games.hungrybear.lite
a554aba36824595818d6274c29130275 com.explorationguides.android.waterloopinckneytrailmius
a712140cce2358543ebab8369408cc0e com.kcc.mgic.android.game.spidercraze.demo
a76c68f67947635e7d737c516e427a2e com.jtpub.hornsandsirens
a88aa41490b039c7897f286a2bd22088 statsheet.statblogs.ButlerBlueFever
a979e9f3c5104e488218428edb7fefc4 com.kasa0.android.slitherpuzzle
abd0a14a3c6c79863c006a4d82818425 com.appsbuilder33854
adabee8f4422341b479d125cf1b1eba4 swan.walljun20j
add02ba28c7eabe6485669520174fc16 net.androidresearch.xmasball
aeb8c37e12cc6621370fef1032ce42f1 com.busybits.games.stackit
af2d87b4fbfe8e7dad770f783bc6feb9 com.kennyrogers.droidradio
affedea957cba3d2768bb479c9499d61 com.appmakr.app158720
b07a5c4dd32503ec67fe452e9f17eab6 com.chs.headrate
b1272e0e80ae5ffe734aa06b953768ac com.VocabularyTrainer V2 L1 de cn
b13acae6fe42993e24121db13c98379b com.tophumour.toto
b437399c3b9c1d58d0c51a0e0b0c9b21 sp.app.bubbleFlood
b669a729090f7d1b4573ad1b2437b5e6 com.texterity.android.JPM
b961bae1bdb11af874e14744ee7a6ca1 net.mobabel.packetracerfree
ba0b08ea84abea560de30f1b5f0c5175 net.jjc1138.android.scrobbler
ba9a81c611d3aa10df6f793df9212174 me.scriptmatic.BHQADM
bcf53a95f085975bf4d6391a4211adef jp.co.skynara.S11002632
bd0bd87e2d38528cd6a79c97211b7bbe coldstream.android.nuclearlite
bfddeff4ce88a40090f86fca5d5efe87 com.mediafriends.chime
c003a20a7631711f311c95a13c410eba com.aseanmobile.chinesedictionary
c0bf2b3f7a190182f3545ac250e494af net.oxdb.CalcBMIs
c13a42f84aa4fe928f5b6931929b4cb0 com.alaskajim.movietrivia1960s
c16a469b79059a888e9a6eaea37de437 luck.of.wise.mushdoor
c19d6bb5616fe02557597680b696de5e com.sequence9designs.recordscratch
c29b86d04f62b3f4bf2835c63520ad1e com.crossfield.ninjabomber
c38d317aa0b6c76fdd44505b4113f2cf com.millionairemateapplication
c4ef5fec276843aa505b76b8f7ef328c com.iwpsoftware.android.picturegallery.strategicbombers.b52
c51c9d75dba47e8d19ae38cb7bab897b statsheet.statblogs.AlcornNation
c720f1f72daa893e2f0b70d40ba145f2 com.diordnaapps.twlotto
c77265cc5dbf1e559fb0c6972755ca53 cyl.datinghoroscope
c7aef851672bbf77de139b5a469ab6ec com.flagsibh.buyinglist
c7d030f728ce5623fce6ea68e18bdb82 com.Relmtech.Remote
c925ea1cc3672f28d6895c8971764105 com.narble.quotes.mathematician
cb7c0637c4c55a64ae51c1838dba2893 circle.wallpaperlucky041405
ce13e0500ac43ffae7c65f0cfa14eba9 cz.gibosms
d2894e15db13ea78546f61bea663cc4f com.bzyg.xingqutanmi
d3f195c91b29a0fcb68078309a257271 jp.AppDevMan.K TaiBrow
d6d927c725ec0ef8181bc97689e280c6 game.hon.cardfindonline
d704c2705474098478469f0c02da79e4 ca.webpanda.wood
d7e1dee2c9003b952869a6803e4b72b7 com.kh.hit.my.face
dab0197b25a07b35cb141067be1f8b46 yami.wallfeb23a
db8538065cb1b179ddf5e65636effed2 com.bitknights.dict.engfre.free
dbd24b729ad2932528c00dd923e159d8 com.twistbyte.chatlingofree

100

Benign sample set, continued
MD5 hash Package name

dc2c23e3e29b29da0545384ef1b2ed10 cn.bluesky.fingerbasketball
dc3fdb446b00a023d7cefe99be2b3992 net.jp.onaka
de2d908a3c3cc9e9d72552ba5feeb113 com.softdyssee.lifestyle.proud jobs lifeguard
dff0fd6860a351b59152c056e6b4516d com.fantasticapps.travelguideus.ca.glendale
e168c74f05ee6d6853a06eeb845f4a52 color.wallpaperlucky061609
e1fc0ddb8e6cb9385cca751586b6ff58 irdc.flower
e4bdfe954463bb2b1db1db01d5b48950 softkos.uc
e4f8437970b9ba9f5ff84fc572173522 com.mobiders.pagoda
e591201357c95d106ce6e4b616b8ea69 com.maxdroid.valentines
e5bb68cb9313f5b38fc83d86511ea64b ks.packs.anotherDay
e751c54ec36d7854b2681c710b689f74 com.fantasticapps.travelguidehkhongkong
e970ba5d6ca4f1ede8e74843d93a45da com.jasc2v8.abc.demo
ea7391cdb5445a92138a49eacd0bc674 com.klaymore.dailycomix
ead6626facc09d0de4fd84bd991f03f9 com.fingerSwimmer.www
eb496d283311d2ad009f56faf22b8181 com.richstern.scribbler
ebb8c145dba2ec052513a3f8be811df4 com.GirlsinDressestwo
ebf8a74e9549d14bf25de93c133fcc4e com.kenagard.widoobiz.android
ec1c6b337fdd14fd3953b245a6a526da com.bestwp.B4515
ece2b726e8c1e7c22c2630558507a28a com.frontapps.fingerscan
f00034eba17c78bbc8525da9e5f4e88e de.itcampus.mdr.android.mdrsachsenanhalt
f240abe83b8da844f5dfdaceba9a6f7e com.AndPhone.game.Defense
f2c3afe177ef70720031f2fb0d0aa343 com.skylineapps.opentech
f40759b74eff6b09ae53a0dbcabc07d4 mango.walljun30m
f40b2e884a9952560b8af1675d1850c0 com.v1 4.B6CE724F0A201822.com
f578f8e4c244d206c8b67fedfe1841d7 com.appcookr.app 128
f5d6b6b019949329ef0de89aca6ac67e com.baste.bender
f67458e82a7e9ecf51808083fc52f2ed com.mobileagreements.club.extra
f6a0e9573810d3da8a292b49940b09e2 com.probaseballapps.sethsmith
f6a3e3ae9e071a28107952a5421132b7 com.sancron.ringtones.sb.funnysmssb
f7f02beff775d3a33e5299784b4f35ce hu.hermeszsoft.origo.mobile.android
f81fbe1113db6ca4c25ec54ed2e04f42 com.hetverkeer.info
f8bdccce4f4462af87b358a8022efa27 com.whiz.android.weather
f9b5afdff92f1eb5c870cf4b601e8dc1 com.snoffleware.android.rationalcalcfree
f9bb1a7e1169e14381ad487351ce25a6 com.xrhome.amapp.smartphoto
fb891ea00a8758f573ce1b274f974634 height.wallfeb28m
fbefbe3884f5a2aa209bfc96e614f115 com.accesslane.screensaver.shootinggallery.lite
fd1af0690436028285a889c1928041ca org.steele.david.silentOnOff
fe99a0177dc38b8f6707ce4f180ad079 com.bestwp.Ispring

Table A.2 enumerates the 242 MD5 hashes of the malicious sample set that
was used in this thesis. For each sample, the corresponding malware family as
it was detected by Kaspersky is listed (queried via VirusTotal1).

Table A.2: Malicious sample set
MD5 hash Family

0018874837a567609e289661cd418639 Trojan-SMS.AndroidOS.Placms.a
003d668ef73eef4aaa54a0deb90715de Backdoor.AndroidOS.GinMaster.a
0059a2d57f9bc3756652a3703c169ca4 Backdoor.AndroidOS.BaseBrid.bj
010982ffdc311f8a8236bde676cd6561 Backdoor.AndroidOS.KungFu.a
019d1fa6e7aaf3c13dede5f445507992 Backdoor.AndroidOS.GinMaster.a
0238a007a38221c13a4fddf7d3771314 Trojan-SMS.AndroidOS.FakeInst.a
02718a3a788e4e34f07b658aa284d680 Trojan.AndroidOS.FakeDoc.a
035548473f8b2b44b50301ea6000d11f Trojan-SMS.AndroidOS.FakeInst.a

1http://www.virustotal.com

101

http://www.virustotal.com

Malicous sample set, continued
MD5 hash Family

036c0c18a99e425d3c189c4467016799 Trojan.AndroidOS.FakeDoc.a
046f32fd5db4097fd38647cb5d607206 Backdoor.AndroidOS.KungFu.a
06d6b20d0a0469ba793706fc2b272848 Backdoor.AndroidOS.Kmin.d
0985eb42014d865543d0c9d95d8a14e2 Trojan.AndroidOS.FakeDoc.a
0a09dfc1b6d3fdbbb5c02bee40054faa Trojan-SMS.AndroidOS.FakeInst.a
0a5816e203b6b5a4f5479cd683729a97 Trojan-SMS.AndroidOS.FakeInst.a
0c41d066a2c9e10e71481f20cc60d4f0 Trojan-SMS.AndroidOS.Placms.a
0c8bd7f64a5b69a11a304c83941d0ea3 Backdoor.AndroidOS.Kmin.c
0cc2c871ec2a37b72098b02ca4392fe9 Trojan.AndroidOS.Gamex.a
0e632dd6c9c60898631a2723b0cfe958 Trojan-SMS.AndroidOS.Placms.a
0f61a048cace9d03fbb1dfe7390a6527 Backdoor.AndroidOS.BaseBrid.ae
12436ccaf406c2bf78cf6c419b027d82 Trojan-SMS.AndroidOS.FakeInst.ed
12830bbc4503cdadaf60becd20ba4fc5 Trojan-SMS.AndroidOS.Opfake.bo
128629e7a3fd7f28ecff2039b5fd8b62 Backdoor.AndroidOS.KungFu.a
1295a47e650e818d7fca5ebe181a0261 Trojan-SMS.AndroidOS.FakeInst.a
1638d5cfffc4bcb2deec3c20ef09b330 Backdoor.AndroidOS.GinMaster.a
17278c15c054f0802dbdb13f23965198 Backdoor.AndroidOS.GinMaster.a
176aeb66e7a9301ca0035abb91253ac6 Trojan-SMS.AndroidOS.Opfake.bo
17eebcde25d7ce816a2aa7ad8a0f8264 Backdoor.AndroidOS.Kmin.a
1c91795299300eecdc5c6d3b9ffc0b56 Backdoor.AndroidOS.Kmin.a
1d52dcd5c2099ef2664398419d154b62 Backdoor.AndroidOS.BaseBrid.ae
1e8a6884470d5496ebd7e6eed902fa91 Backdoor.AndroidOS.GinMaster.a
2022bbab6d6a89ff7c923ea54bd49ee5 Backdoor.AndroidOS.Kmin.c
227a4c675f2384da13af381938e432df Trojan.AndroidOS.Gamex.a
228eaea19c08f0912805669e081da02f Trojan-SMS.AndroidOS.Placms.a
22b79389e097853f6fc573e7ffbe6c04 Trojan.AndroidOS.FakeDoc.a
230ee6ed41f47efd862b3d66ee8f42f4 Backdoor.AndroidOS.GinMaster.a
2573c404acf459c1e11f5124c1a75073 Backdoor.AndroidOS.KungFu.a
2609905341475941eef9dce106609cb6 Trojan-SMS.AndroidOS.FakeInst.a
263e0a743cb3729096cceccea6caf58f Backdoor.AndroidOS.Kmin.a
266cfb7cb1fd1cea802258de2a011049 Trojan-SMS.AndroidOS.FakeInst.a
26a5328596d96b08627c1afb408acf8a Backdoor.AndroidOS.GinMaster.a
29ea206bd85a835dead88443fbb1cf1f Trojan-SMS.AndroidOS.FakeInst.a
2bc92bf1bbfadbc928d49fdc70b3035e Backdoor.AndroidOS.BaseBrid.bj
2c53e182ed5669f798402e638bbd02cc Trojan-SMS.AndroidOS.Opfake.bo
2dba8e5f96961e0fdf584e31d1bb8bc9 Trojan-SMS.AndroidOS.FakeInst.a
2f2cd901375d064a9b3e7734789c77fb Trojan-SMS.AndroidOS.FakeInst.a
2f80ed362d04fc249e619b5f56fb5b0d Backdoor.AndroidOS.GinMaster.a
30908fecdc8d811fc9e94280a1648bd0 Backdoor.AndroidOS.KungFu.hb
30a579fb2a39dab5c8fe82c9a9a6383d Trojan-SMS.AndroidOS.FakeInst.a
32ff30b47a183c86a83840f7028dea00 Backdoor.AndroidOS.GinMaster.a
33094d472a736f4a6706de8f8db71804 Trojan-SMS.AndroidOS.Opfake.a
37eea1dc578ab0efaee56dce13d3d84c Backdoor.AndroidOS.Kmin.e
37f894dff34637d4256dc0ebdc645e70 Trojan-SMS.AndroidOS.Opfake.a
38a33a960821e8980f9b60b9c6662f79 Trojan.AndroidOS.FakeDoc.a
3913db14a3237950e3ae858cae5dda75 Backdoor.AndroidOS.Kmin.a
39f874b984ee34310b126d543fed3706 Backdoor.AndroidOS.GinMaster.a
3bd9542cd86fcf966a1bd6a41389e7d9 Backdoor.AndroidOS.GinMaster.a
3ce1442b9f4ddb5d0bef33d2b836cf7a Trojan-SMS.AndroidOS.FakeInst.a
3cec22da373dad044c9fd40c87689057 Trojan-SMS.AndroidOS.Opfake.bo
3dc29d1a5d7b5e0df3bbf12190fb62cc Backdoor.AndroidOS.BaseBrid.cr
3e018fd52ed643b90f12947801d85cd3 Backdoor.AndroidOS.GinMaster.a
4005dd74246c5e97a0a0dd860d29bee5 Backdoor.AndroidOS.BaseBrid.g
432ab46f7a77b10a1ab1b0d476f52bcc Trojan.AndroidOS.Gamex.a
4446e1f537f80b11de4ef19893dc0463 Trojan-SMS.AndroidOS.FakeInst.a
44dcdba726344eb52fb31f6ec41df8bb Trojan-SMS.AndroidOS.FakeInst.a
4790a6ba7717306876216aa28a4492f7 Trojan-SMS.AndroidOS.FakeInst.a
49ad664ed30b51c000137adf6c415d9a Trojan-SMS.AndroidOS.FakeInst.a
4bd002a2e2c5d8772ce4fd2c095da171 Trojan-SMS.AndroidOS.Placms.a

102

Malicous sample set, continued
MD5 hash Family

503595a663c3cb776b432fe33cb35280 Backdoor.AndroidOS.Kmin.f
528b7de40cf0eb6ef477a7f38c57d4d8 Backdoor.AndroidOS.GinMaster.a
53f5696da3fee6db894aed6fae720ba5 Trojan.AndroidOS.Gamex.a
55c3ef423e9c8075001a98f34e5c548b Trojan-SMS.AndroidOS.FakeInst.a
566240dd12bba783d49d6ba7e463081b Trojan.AndroidOS.FakeDoc.a
566787a4656ad47606c3c90b66e0f850 Trojan-SMS.AndroidOS.FakeInst.a
568d67831947be03262bc7486dbeb140 Backdoor.AndroidOS.KungFu.hb
568dd1845ef09f34f8278eb7c6c4f80f Trojan-SMS.AndroidOS.Placms.a
56b7fff85e7f1ae0d1727a2beb093b77 Backdoor.AndroidOS.BaseBrid.bn
56dfef2e97970609968bf9556114f8b3 Backdoor.AndroidOS.GinMaster.a
585bd45a03ac050d9cceb8c2032cdd72 Trojan.AndroidOS.Gamex.a
5a3c92f9b9c6eeac3b1151030339ec54 Trojan.AndroidOS.FakeDoc.a
5b6f15437c0627bf44cf346a139dc027 Backdoor.AndroidOS.Kmin.f
5f47cfd0fda265168462007c9e50b456 Trojan.AndroidOS.FakeDoc.a
6018fbf0ec36618da323a0b41fac02e4 Trojan.AndroidOS.FakeDoc.a
6559e92ac9b7c4209e22af2f628e6532 Trojan-SMS.AndroidOS.FakeInst.a
65f44d56a0676a2fdbc39180bba42c03 Backdoor.AndroidOS.KungFu.hb
660780b794ec35dcd587f6437e04caf0 Trojan.AndroidOS.FakeDoc.a
6724bc8a45de7bc489433fd6c928b37e Trojan-SMS.AndroidOS.Opfake.bo
676e19af453394bea375b85c95ddd9ad Backdoor.AndroidOS.GinMaster.a
68d60da4ca19572d58de275a1a77c9f1 Trojan.AndroidOS.Gamex.a
6b4cc83e23ac611c75dacc0b4cd698bd Trojan-SMS.AndroidOS.FakeInst.a
6f501f23d11f38a99a8da644d078fcb7 Backdoor.AndroidOS.KungFu.a
6fb35cbcbe6a6bcab53c60dbff35d876 Backdoor.AndroidOS.Kmin.a
714e9fde06f7d6805ccc4d303b00280e Trojan.AndroidOS.Gamex.a
73ad43a68890220c030623b58cf42d8e Backdoor.AndroidOS.GinMaster.a
74cadaeeb296d96347f71a0aa827cc40 Backdoor.AndroidOS.Kmin.e
758e6a40de51292611be7d5323f74088 Trojan.AndroidOS.FakeDoc.a
75bec5da538e24f2b63f722a9b321bd8 Backdoor.AndroidOS.KungFu.ki
7639883e747b440951b7f1d72525fa17 Trojan-SMS.AndroidOS.Opfake.bo
77684a8f14e5859b6734124447e83c38 Trojan-SMS.AndroidOS.Opfake.bo
79b4d8e85755bf4cee0f92c2ca0d3c57 Trojan-SMS.AndroidOS.Opfake.bo
79e40d747b90137f5ab8dd17047d2679 Backdoor.AndroidOS.BaseBrid.bj
7b6d92c16407ada04ef023f9d8f9004e Backdoor.AndroidOS.GinMaster.a
7bd81da3c4a01f2ada043879ed5ce059 Trojan-SMS.AndroidOS.Opfake.bo
7d5213edab1f71f41983b1b88cd4f683 Backdoor.AndroidOS.BaseBrid.bj
7d8930d68f9409d29680e0eb4bc5c822 Trojan-SMS.AndroidOS.FakeInst.a
7d8be7bbc4597d1302ce4eaf34c9f579 Trojan-SMS.AndroidOS.Placms.a
7e4959e409e277d564261c18e8604747 Trojan-SMS.AndroidOS.FakeInst.a
7ee5f03b09cc71116f472d9f9a28247a Backdoor.AndroidOS.BaseBrid.bn
7fda2f90fbc45e7c165a820772e4e42e Backdoor.AndroidOS.Kmin.e
80279e8517876a47a07bad63427b6eed Trojan-SMS.AndroidOS.Opfake.a
8223350420eb11293415809cc5e82c5c Backdoor.AndroidOS.KungFu.in
83a5bb4cbab99da0676b8cc80dbe53c7 Backdoor.AndroidOS.KungFu.ki
847ecfbc03ccb0417550abf22739f988 Trojan-Banker.AndroidOS.Zitmo.a
85bc8ed574554393e7e11ec42df89129 Backdoor.AndroidOS.GinMaster.a
871fc929fd8e066bbb3badadb4b6321c Backdoor.AndroidOS.KungFu.a
89b0fcae589b3a7d5e79fa870e0f47ce Backdoor.AndroidOS.GinMaster.a
8aac3c2bc718701749a1d485000775c8 Backdoor.AndroidOS.Kmin.a
8ae9cc9e53baeab4c5ea9f4e79091502 Trojan-SMS.AndroidOS.FakeInst.a
8b488822a33ae2f6b316d90e92fb5872 Trojan-SMS.AndroidOS.Opfake.bo
8b5132504377078d4a7281b45f9fae29 Trojan.AndroidOS.Gamex.a
8f7f191ab891059c6d55c33af69abbb7 Trojan-SMS.AndroidOS.FakeInst.a
9210c0c1aa3eb4de11d16a0b7072d94b Backdoor.AndroidOS.BaseBrid.bj
9234e1fe084d21a84fb56028c1aafe9c Backdoor.AndroidOS.KungFu.ht
923f00829bd4fb49e85d6688d54fd45c Trojan-Banker.AndroidOS.Zitmo.a
9300841786cd98af1921fc41b0f5e1aa Backdoor.AndroidOS.Kmin.c
936162a5cdfc1e73a1d8740ab1d164b2 Backdoor.AndroidOS.BaseBrid.ae
93fd1e8021fb3cd7c3a6ecf9135baef1 Trojan-SMS.AndroidOS.Opfake.bo

103

Malicous sample set, continued
MD5 hash Family

959aa8b2e31bfe6429b92863f9630591 Backdoor.AndroidOS.GinMaster.a
95f08c6f15406f43dbacb744c27ae72d Trojan.AndroidOS.FakeDoc.a
96c7d4e21d8fb03f94b703c43233933e Trojan-SMS.AndroidOS.FakeInst.a
9954b925437e68ce28946b941e59cc6a Backdoor.AndroidOS.GinMaster.a
9a40f64e91443c2a3b2d64902efb9e66 Trojan-SMS.AndroidOS.Opfake.bo
9b38a69982ae2bf061d59f154bad393d Trojan.AndroidOS.FakeDoc.a
9be24f5e7c5f9faaaba0aec59e5e1982 Trojan.AndroidOS.FakeDoc.a
9cfd82495b917dfabe3c72eabec213a6 Trojan-SMS.AndroidOS.Opfake.bo
9d62dda0b7b1ae7795dc6dd701508765 Trojan.AndroidOS.FakeDoc.a
9d7a1ca92904302db105c2c755f57586 Backdoor.AndroidOS.KungFu.a
9e5affc92dd32dbf11ac1b80941ca21d Trojan-SMS.AndroidOS.FakeInst.a
9f37947e358d9d3f1ea15d86d82695da Trojan-SMS.AndroidOS.Opfake.bo
9f4612ebe8f5f8ceee02af56d971e3e2 Trojan-SMS.AndroidOS.FakeInst.a
9f857bb83c4237e54adabd23cafcd332 Trojan-SMS.AndroidOS.Opfake.bo
a1c1a7ee09030fc0432f399401500480 Backdoor.AndroidOS.GinMaster.a
a1c57ec4a8823549db0cea2962cf934b Trojan-SMS.AndroidOS.FakeInst.a
a373823c2a2df566c28be35892efec60 Trojan-SMS.AndroidOS.FakeInst.a
a4217a8256b8b5858ba8b16ffc386ce1 Backdoor.AndroidOS.GinMaster.a
a6b7d5652760aec0575f6971d3dc8659 Trojan-SMS.AndroidOS.FakeInst.ed
a73a185c19d97bb42ec3e4edb375a2ed Backdoor.AndroidOS.GinMaster.a
a74b1d46ed083695be69586c69c0f81c Trojan-SMS.AndroidOS.Placms.a
a84b882ecd9d51c39afcdb870bb0aaee Backdoor.AndroidOS.GinMaster.a
aaead6e17631216f24a0b885b0aca7a5 Trojan-SMS.AndroidOS.Placms.a
abd5dd4db04e228fc504a62f81ebbde6 Backdoor.AndroidOS.KungFu.hb
ae1bbad09466168414e9bbc65f37033a Trojan-SMS.AndroidOS.FakeInst.a
aecd04d69795f6f382ffce0ff85f7fb6 Trojan-SMS.AndroidOS.Opfake.bo
afd7b5d39c555f4eb73cffa5f4f623e6 Trojan-SMS.AndroidOS.FakeInst.a
b001c3e8b7583d2cc1ee26e0b53296a6 Trojan-SMS.AndroidOS.Opfake.bo
b09009ae2da2bda6dc0857e6308a6fbe Trojan-SMS.AndroidOS.Jifake.d
b289df7defcef4d58162d77fa5d362d8 Backdoor.AndroidOS.Kmin.f
b4a07c8a8832586187ed7a3faf668856 Trojan-SMS.AndroidOS.Placms.a
b5d0e736412d1b32d9a5c01b973ed2b6 Trojan-SMS.AndroidOS.Opfake.bo
b5f9db56b068aad3b12e79bfc1ff0bab Trojan-SMS.AndroidOS.Placms.a
ba1d7ad4f2bd528384a07ab2b2f0d67b Trojan-SMS.AndroidOS.Opfake.bo
bad34491dddf683b68093e04dc354e5e Trojan-SMS.AndroidOS.FakeInst.a
bba424b89b515da635a3ff1509609fee Backdoor.AndroidOS.GinMaster.a
bc7def5a3b3cba38710dbbc7ef865de6 Backdoor.AndroidOS.BaseBrid.bj
bd2403966eba9e95b9479640cfdecb94 Trojan-SMS.AndroidOS.Placms.a
bd70ebebcb5749f8b7ba3f52b9321e79 Backdoor.AndroidOS.KungFu.hb
be4f6b944700485a90c7743d6b7f99bf Trojan-SMS.AndroidOS.Opfake.bo
be9ca2f1c159f192f5fb67c964c5c724 Backdoor.AndroidOS.GinMaster.a
bf17b70c385cd70e1f3016e72f97242b Backdoor.AndroidOS.KungFu.a
bf4e03e02829b95a20680c4903f49807 Trojan-SMS.AndroidOS.Opfake.bo
c01a1ca0ea4aa4be9d56c876da97208d Trojan-SMS.AndroidOS.FakeInst.a
c16b7422ef5fdf06cea68f0d7d5e471d Trojan.AndroidOS.FakeDoc.c
c3aa6c02a7ba986a6522fe31bad6f00f Backdoor.AndroidOS.GinMaster.a
c3b65bec97c87a2e99804d35b65eb182 Trojan-SMS.AndroidOS.FakeInst.a
c4573c02744ef224deadbba46292f795 Trojan-SMS.AndroidOS.FakeInst.a
c4f9575adb31940b5c990ca829c607ab Backdoor.AndroidOS.GinMaster.a
c5f6d5289097dd236db0a131af6ffede Trojan-SMS.AndroidOS.FakeInst.a
c6566c1b22ee500ab91d971e99cd7dd5 Trojan-SMS.AndroidOS.FakeInst.a
c6d940417473b10bf65bd2bda804b3fd Backdoor.AndroidOS.GinMaster.a
c71135730b5e26e4c148e941a446bf79 Trojan-SMS.AndroidOS.Opfake.bo
c7113d3acf769a58c1f21f8534d29f8f Trojan-SMS.AndroidOS.Opfake.bo
c7b53bf5bd28af3ad84bf53dbb94bfbb Trojan-SMS.AndroidOS.Opfake.bo
c99ba1121c6c72d851d937a0fa59aea2 Trojan-SMS.AndroidOS.Opfake.bo
c9e3af6a4429197c05c18408f9f287ee Trojan-Spy.AndroidOS.Zitmo.b
cb04487016cc6dbf4481c2399a4b3b78 Backdoor.AndroidOS.BaseBrid.bn
cbfa867dcfa8cdfab76dee5393113a6d Backdoor.AndroidOS.GinMaster.a

104

Malicous sample set, continued
MD5 hash Family

cdc7b23acd9f66ca68d66c4010b49964 Trojan.AndroidOS.Gamex.a
cdeb94762c8975617d0a883d2f1428d9 Backdoor.AndroidOS.BaseBrid.ae
ce4eaaf64a35f9be4a4e5f9c30ad3224 Trojan-SMS.AndroidOS.Placms.a
ceda0c9175b1cff39caf783627befcb1 Backdoor.AndroidOS.KungFu.de
cfad9d5cd164100080aee005eff08d14 Backdoor.AndroidOS.KungFu.a
cff20c72cfa0db47b7158f9b3f4d2a08 Backdoor.AndroidOS.GinMaster.a
d0e8dd0d51fe92e04c49a1a2d3b1ece7 Backdoor.AndroidOS.GinMaster.a
d1610b2ccd89bf7aea4a9e16b885f08a Backdoor.AndroidOS.GinMaster.a
d2f410b63ef063f2bd204a4ed58b63a8 Backdoor.AndroidOS.Kmin.f
d3148c65bcb55031b572e0035570a248 Trojan-SMS.AndroidOS.FakeInst.a
d3cfbf352739d475f60ace44b4686528 Backdoor.AndroidOS.BaseBrid.cr
d41c6c23c6c80d76d705125dfe33e1b1 Trojan-SMS.AndroidOS.Opfake.a
d4493ff3e5d8d1cdae8cc4cf72397905 Trojan-SMS.AndroidOS.FakeInst.a
d78ac9eb24de72120664b6dff4c002a5 Trojan-SMS.AndroidOS.FakeInst.a
d97e71f5bd865fdad16f1f19d757197f Trojan.AndroidOS.FakeDoc.a
d9b29aca1ab46c3fb136f55053d29a2e Backdoor.AndroidOS.Kmin.d
d9cb8085f9dfd250fdcf669496c7e61f Trojan-SMS.AndroidOS.FakeInst.ed
da71c18f32c63b10b2caea2b718067ed Trojan-SMS.AndroidOS.Opfake.bo
dac16af9e6d007ee7905871f10c727a8 Backdoor.AndroidOS.BaseBrid.ae
db4989689102a69ce8216f208fdbe38e Trojan-SMS.AndroidOS.Opfake.bo
dbbb45a2286e24d4dbf6e23ebc158691 Backdoor.AndroidOS.GinMaster.a
dc0c80fc5a5bc6cc816136ff7a8930bb Backdoor.AndroidOS.GinMaster.a
dec8a6bec19e206c3a0303ed9c0c90aa Trojan-SMS.AndroidOS.Placms.a
df10c7840e45ce5add284c66bb57308d Trojan-SMS.AndroidOS.FakeInst.a
dfbc2814fb096ee0ce18a64d208017bc Backdoor.AndroidOS.KungFu.a
e25db0b7d60e50b6fef48582a352b8c5 Trojan-SMS.AndroidOS.FakeInst.a
e32f9c0b948e251b48217438b1d2295f Backdoor.AndroidOS.GinMaster.a
e40e0e2b3131430383e9bc34b376ff87 Trojan-SMS.AndroidOS.FakeInst.a
e50722973ed0a6c53b0613c07c92e983 Backdoor.AndroidOS.KungFu.a
e7db3851a49e3e099ed24e9f886128e0 Backdoor.AndroidOS.Kmin.b
e830a4982acbf6cc383d00e8e482753c Trojan.AndroidOS.FakeDoc.a
e8fb65a64577a52b19ba329c217dd823 Trojan-SMS.AndroidOS.Placms.a
e94af95ca1ff5e9ef187eb335ebecd87 Trojan.AndroidOS.Gamex.a
ebb2fa0fd4c7116c589832e6a4140ef4 Backdoor.AndroidOS.GinMaster.a
ed06d911347858a506ff1c32a6b4c567 Backdoor.AndroidOS.BaseBrid.a
ed78482b420d07ddf8eb5b059fd57199 Trojan-SMS.AndroidOS.FakeInst.a
ede142e2a8273929b8d1a9a0d57c0ab0 Backdoor.AndroidOS.KungFu.ki
ee3b5ddbfcb866141e9c123b62695e1b Backdoor.AndroidOS.Kmin.c
ef2e6880021c5c2909f9a61091b0ee47 Trojan.AndroidOS.FakeDoc.a
f181409e206cbe2a06066b79f1a39022 Trojan.AndroidOS.Gamex.a
f2f2709fc2c8961a7dcf0e167f73e353 Backdoor.AndroidOS.Kmin.d
f3194dee0dc6e8c245dc94c5435750a5 Trojan-SMS.AndroidOS.Placms.a
f342d8f0c18410e582441b19de8dd5bb Trojan-SMS.AndroidOS.Placms.a
f42a7cdc8a7b65211ce0ca5610616596 Trojan-SMS.AndroidOS.Opfake.bo
f458ca5d41347a69c1c8dc99812485ee Backdoor.AndroidOS.GinMaster.a
f46f75e4eb294d5f92c0977c48f5af4f Backdoor.AndroidOS.GinMaster.a
f4d80df6710b3848bf8c78c1b13fe3b5 Trojan-SMS.AndroidOS.FakeInst.a
f55a7ad2ab8b3ac2447964614493fffe Trojan-SMS.AndroidOS.FakeInst.a
f7ad9e256725dd6c3cab06c1ab46fcc2 Trojan.AndroidOS.Gamex.a
f98ae3c49ce8d4d5ec70f45f06601629 Trojan-SMS.AndroidOS.FakeInst.a
fd225d8afd58cdec5f0c9b0f7fd77f58 Backdoor.AndroidOS.BaseBrid.a
fd48609ba4ee42f05434de0a800929ad Trojan-SMS.AndroidOS.FakeInst.a
fdbce10ece29f14adfb7ebe99931d978 Trojan-SMS.AndroidOS.Opfake.bo
fe3cb50833c74c60708e4e385bb8b4fc Trojan-SMS.AndroidOS.Placms.a
fea4a07813c0c557b3d745111a27d124 Trojan-SMS.AndroidOS.Opfake.bo
fead2a981fc24a2f9dd16629d43a6969 Trojan-SMS.AndroidOS.Opfake.bo
ffbee6719c51d3a1c4a1717c0b00f8f1 Backdoor.AndroidOS.Kmin.f

105

Appendix B

Availability of Related
Work
Table B.1 depicts the available research frameworks from Chapter 6 and at
which URL they are available for download.

Table B.1: Availability of research frameworks

Framework URL

Androguard http://code.google.com/p/androguard
APKinspector http://github.com/honeynet/apkinspector
apktool http://code.google.com/p/android-apktool
Dedexer http://dedexer.sourceforge.net
Dexter http://dexter.dexlabs.org
Dare http://siis.cse.psu.edu/dare
ded http://siis.cse.psu.edu/ded
dex2jar http://code.google.com/p/dex2jar
JEB http://www.android-decompiler.com
smali http://code.google.com/p/smali
Radare2 http://radare.org
Julia http://www.juliasoft.com

Andrubis http://anubis.iseclab.org
AppsPlayground http://dod.cs.northwestern.edu/plg
CopperDroid http://copperdroid.isg.rhul.ac.uk
DroidBox http://code.google.com/p/droidbox
DroidScope http://code.google.com/p/decaf-platform
Mobile-Sandbox http://mobilesandbox.org
SandDroid http://sanddroid.xjtu.edu.cn
ForeSafe http://www.foresafe.com/scan
JoeSecurity http://www.apk-analyzer.net

Andromaly http://andromaly.wordpress.com
Apex http://github.com/recluze/apex-core
AppFence http://appfence.com
Aurasium http://www.aurasium.com
Kirin http://siis.cse.psu.edu/tools.html
MockDroid http://www.cl.cam.ac.uk/research/dtg/android/mock
TaintDroid http://appanalysis.org

ScanDroid http://github.com/SCanDroid/SCanDroid

AndroidRipper http://wpage.unina.it/ptramont/GUIRipperWiki.htm
PScout http://pscout.csl.toronto.edu

106

http://code.google.com/p/androguard
http://github.com/honeynet/apkinspector
http://code.google.com/p/android-apktool
http://dedexer.sourceforge.net
http://dexter.dexlabs.org
http://siis.cse.psu.edu/dare
http://siis.cse.psu.edu/ded
http://code.google.com/p/dex2jar
http://www.android-decompiler.com
http://code.google.com/p/smali
http://radare.org
http://www.juliasoft.com
http://anubis.iseclab.org
http://dod.cs.northwestern.edu/plg
http://copperdroid.isg.rhul.ac.uk
http://code.google.com/p/droidbox
http://code.google.com/p/decaf-platform
http://mobilesandbox.org
http://sanddroid.xjtu.edu.cn
http://www.foresafe.com/scan
http://www.apk-analyzer.net
http://andromaly.wordpress.com
http://github.com/recluze/apex-core
http://appfence.com
http://www.aurasium.com
http://siis.cse.psu.edu/tools.html
http://www.cl.cam.ac.uk/research/dtg/android/mock
http://appanalysis.org
http://github.com/SCanDroid/SCanDroid
http://wpage.unina.it/ptramont/GUIRipperWiki.htm
http://pscout.csl.toronto.edu

	Introduction
	Background Information
	Android System Architecture
	Linux kernel
	Libraries
	Android runtime
	Application framework
	Applications

	Dalvik Virtual Machine
	Hardware constraints
	Bytecode

	Apps
	Application components
	Manifest
	Native code
	Distribution

	Malware
	Types of malware
	Malware distribution
	Malware data sets

	Design
	Design
	What to collect
	Framework design
	Native code

	Specification
	Specification
	Existing solutions

	Implementation
	TraceDroid
	Implementation
	Andrubis integration
	Discussion

	Android Framework Modifications
	killProcess()
	Making am profile stop blocking
	Timeout values

	Analysis Framework
	Static analysis
	Dynamic analysis
	Post processing
	Inspecting TraceDroid output

	Bytecode Weaving
	AOP: Aspect Oriented Programming
	Advantages and drawbacks of bytecode weaving

	Evaluation
	Benchmarking TraceDroid
	Benchmark setup
	Benchmark results

	Benchmarking TraceDroid + Andrubis
	Andrubis background
	Benchmark results

	Coverage
	Compared to manual analysis
	Breakdown of simulation actions
	Coverages results

	Failures
	Dissecting Malware
	ZitMo: ZeuS in the Mobile
	Dissecting a1593777ac80b828d2d520d24809829d
	Discussion

	Related Work
	Background and Surveys
	Systematization of Knowledge
	Attributes
	Classification
	Overview of (proposed) frameworks

	Dynamic Analysis Platforms
	AASandbox
	TaintDroid
	DroidBox
	Bouncer
	Andrubis
	DroidScope
	AppsPlayground
	Mobile-Sandbox
	CopperDroid
	Closed frameworks

	Conclusions
	Future Work
	TraceDroid
	TraceDroid Analysis Platform
	Other research directions

	Conclusions
	TraceDroid
	TraceDroid Analysis Platform

	Appendices
	Sample Set
	Availability of Related Work

