
i
i

i
i

i
i

i
i

WHEN MEMORY SERVES

NOT SO WELL

MEMORY ERRORS 30 YEARS LATER

PH.D. THESIS

VICTOR VAN DER VEEN

VRIJE UNIVERSITEIT AMSTERDAM, 2019

i
i

i
i

i
i

i
i

Faculty of Science

The research reported in this dissertation was conducted at the

Faculty of Science — at the Department of Computer Science — of

the Vrije Universiteit Amsterdam

This work is part of the research programme Cyber Security with

project number 628.001.021, which is �nanced by the Netherlands

Organisation for Scienti�c Research (NWO)

Copyright © 2019 by Victor van der Veen

ISBN 978-94-6361-334-7

Cover design by Victor van der Veen

Printed by Optima Gra�sche Communicatie

This work was written in Vim, not Emacs

i
i

i
i

i
i

i
i

VRIJE UNIVERSITEIT

WHEN MEMORY SERVES

NOT SO WELL

MEMORY ERRORS 30 YEARS LATER

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan

de Vrije Universiteit Amsterdam,

op gezag van de rector magni�cus

prof.dr. V. Subramaniam,

in het openbaar te verdedigen

ten overstaan van de promotiecommissie

van de Faculteit der Bètawetenschappen

op donderdag 24 oktober 2019 om 13.45 uur

in de aula van de universiteit,

De Boelelaan 1105

door

VICTOR VAN DER VEEN

geboren te Hoorn

i
i

i
i

i
i

i
i

promotor: prof.dr.ir. H. J. Bos

copromotor: dr. C. Giu�rida

i
i

i
i

i
i

i
i

Voor Marieke

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

“First, it is slightly cheaper; and secondly it has the words

DON’T
PANIC

inscribed in large friendly letters on its cover”

Douglas Adams on The Hitchhiker’s Guide to the Galaxy

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

Acknowledgements

“Haha, het is echt het meest vage projectvoorstel dat ik ooit heb geschreven.” This

is how Herbert pitched his open PhD position to me, back in 2013. The proposal,

indeed, was quite special: “Je zult ook af en toe een tijdje in Californië moeten

zitten bij Christopher Kruegel in Santa Barbara” — what a horrible thought. It

was only a few months earlier when I �nally transitioned from eternal student

being to a healthy, happy, functional, well-behaved grown-up. And now I con-

sidered going back to that asbestos clinic? What was wrong with me? Clearly, it

required a lot of drthinking, discussing, soul searching, and iterating over pros

and cons to come to the conclusion that I did not want to ask myself what if? 50

years from now. In other words, I did a PhD because I had fear of missing out.

And so I entered my four year rollercoaster ride as a PhD student at the Vrije

Universiteit, in the systems and network security group — now known as VUSec.

I consider myself extremely lucky to have been a member of this group and I

am con�dent that this dissertation would not exist if it wasn’t for all the bright

people I had around me. First and foremost, I would like to thank my promotor,

supervisor, and professor, Herbert Bos, for his guidance and support during my

journey. He taught me not only how to write coherent stories, he also forced me

to think critical and always look for scienti�c value when pursuing new ideas.

His laid-back attitude, great humor settings and considerable basketball skills

were a perfect match that made that I very much enjoyed the PhD experience. I

honestly could not have wished for of a better supervisor than Herbert.

I am deeply grateful to my mentor and copromotor, Cristiano Giu�rida. Work-

ing with Cristiano was truly inspiring. Combined with his incredible amount of

systems knowledge, his ability to come up with clever �xes and genius work-

arounds saved me numerous times. I will always remember that afternoon in

Santa Barbara, where I had to “bring in the troops” — Cristiano came over (he was

in the ‘neighborhood’ anyway) and managed to turn our theoretical attack into

something that actually operated. Cristiano taught me to never settle, always be

ix

i
i

i
i

i
i

i
i

x ACKNOWLEDGEMENTS

skeptical, and, most importantly, how to perform sound scienti�c research. I am

indebted.

Next, I would like to thank my reading committee, namely Michael Franz,

Stefan Brunthaler, Mathias Payer, Lucas Davi, Stijn Volckaert, and Henri Bal. I

cannot think of a better assembly of researchers with broad expertise on the

topics covered in this dissertation to assert my claims. I am thankful that they

all took time o� their busy schedules to review this thesis.

I would like to express my gratitude to two extraordinary people in my life,

Ben and Kaveh. I had the pleasure to �rst work with both, and later elevate our

professional relationship into invaluable friendships. I learned a great deal about

life, and research from both Kaveh and Ben. Thank you for the crazy memories.

Our friendship is extremely important to me. You are both superstars.

I am also grateful for the many other people I had the pleasure to spend time

with around the university. First, I would like to express my gratitude to Remco.

Although our shared time in the group was short, Remco taught me the most im-

portant skills for completing a dissertation: prioritize and focus — whatever you
do, think about what and how it contributes to your goal of getting a PhD. I took

his advice to heart. Second, I wish to thank Chen. I still miss our breaks where

we would come up with new ways of changing the world. I will never forget that

hectic night before the TypeArmor submission where you showed me Chinese

e�ciency: our Skype call took less than one minute. Shit on the inkscape! Third,

I thank Dennis, with whom I worked closely on my �rst paper. I envy his ability

to �nish such paper two weeks before the deadline, while simultaneously show-

ing me that it is ok to write not-so-long-and-complex sentences — those without

em-dashes. I would also like to thank Asia. She was always happy to burn some

of her expensive cycles on explaining me the simplest basics of low-level systems.

She taught me the fundamentals of writing and presenting — be nice to the color

blind! Albeit short, it was a delight to work with her; if only it could have been a

bit longer. Finally, I wish to express my thankfulness to Martina. Our collabora-

tions where never boring, just as pretty much every conference we got to attend.

Thank you for all the great nights and good talks.

I was fortunate enough to collaborate with many more smart researchers,

both local and external to Amsterdam, resulting in a number of co-authored

publications. My sincere thanks go to Elias, Alberto, Moritz, Yanick (the 100%

premium-quality Italian), Enes, Daniel, Markus, Thorsten, Radhesh, Christopher,

Federico, Clémentine, Georg, Matthias, Sebastian, Chris Ouwehand, Andre, Hari-

krishnan, Christian, Lionel, Martin, Manolis, Sanjay, Giovanni, Lukas, and Edgar.

This thesis would not exist if it wasn’t for you.

i
i

i
i

i
i

i
i

ACKNOWLEDGEMENTS xi

VUSec and the Computer Systems department of the Vrije Universiteit are a

fantastic place to meet incredible individuals. I relished many CompSys borrel-

takeover sessions, especially those for which we needed a 24-hour access card

to get out of the building. Thank you Angelos, Alyssa (also for supporting me

in San Diego!), Andrei Bacs, Andrei Tatar, Erik van der Kouwe, Istvan, Koen,

Koustubha, Lucian, Natalie, Marco, Pietro (my code also has bugs, don’t worry),

Sanjay, Sebastiaan, Stephan, and Taddeüs. Thank you for making life bearable.

Also thank you Pieter (alles goed?), Dirk, Ceriel, and Marc for the fun conver-

sations we had. I also thank my roomies from P456. Erik Bosman, you are the

smartest person I ever met and I doubt this will ever change; Arno, your absence

was amazing!

Thank you Caroline, not only for shielding me from the university’s bureau-

cracy, but also for being a beacon of light in troubling times. Because of you, I

never had to worry about administrative tasks. On the contrary, I secretly hoped

things would fail so that I had an excuse to catch up with Caroline. It was good

to have a friendly ear to talk about sorrows other than computer systems. Also

thank you Mojca, for arranging many things so swiftly. I also express my grati-

tude to my friends and former colleagues of the VU IT department. Support for

Linux printing could be improved, but, if I recall correctly, my purple network

connection never let me down.

California became our second home during my PhD. Our stay in Santa Bar-

bara was immense. I thank the UCSB Seclab for hosting me. I am also grateful

to Renwei Ge, for inviting me to join the Qualcomm Product Security Initiative

in San Diego. I would also like to thank Alex Gantman, Can Acar, David Hartley,

and Robert Turner. You made me feel at home, while giving me the opportu-

nity to continue doing what I like most. Also thank you, Robert Buhren, for

co-interning in a weird time frame.

Finally, I express my gratitude to my dear friend, Erik-Paul. It was nice to

have a companion like you outside of academia, somebody who could keep me

connected to the real world — our mid-week gatherings were a �tting way to

vent about everything that is wrong with it. I admire your enthusiasm and your

incredible pace of coming up with project ideas. I will nominate you as VUSec

counselor as soon as they open the position. Also thank you Kasper, for the fun

trips we had to Kuala Lumpur and your unhealthy amount of sarcasm. Let’s try

to keep Heap Heap Hooray alive.

Last but not least, I would like to thank those who are closest to my heart.

Pap, mam, bedankt voor alles. Jullie hebben me altijd de vrijheid gegeven om

mijn hart te volgen. Pap, jouw perfectionisme en mam, jouw nuchterheid hebben

i
i

i
i

i
i

i
i

xii ACKNOWLEDGEMENTS

gemaakt wie ik ben en ik denk dat dit zeker terug te vinden is in dit proefschrift.

Casper, bedankt voor de morele support; ik kijk uit naar jouw afstudeerscriptie.

Ik hou van jullie. Mannie en Nico, bedankt voor de ontelbare keren dat Lorèn

(en Marieke) welkom waren ten tijde van deadlines en conferenties.

Marieke, woorden schieten tekort om te beschrijven hoe dankbaar ik je ben.

Dankbaar voor de talloze �jne gesprekken over het leven; ik kan nog steeds veel

van je leren. Uiteindelijk was jij het die me overhaalde om voor mezelf te kiezen

en te gaan promoveren. Dankbaar voor het overnemen van de dagelijkse beslom-

meringen als ik weer eens ‘druk’ was en je er praktisch alleen voor stond. Met

een baby — of later een peuter. Dankbaar ook, voor het meereizen naar Cali-

fornië. Vooral die drie maanden in Santa Barbara, waarbinnen ik zo nodig nóg

een artikel wilde schrijven, waren niet altijd even gezellig. Dankbaar dat je me

meenam naar de buitenwereld, ook al zat ik soms vaker op mijn telefoon dan

met mijn hoofd bij jullie. Ik hou zielsveel van je en ik verheug me op dat wat

hierna gaat komen, wat het ook is. Lorèn, je hebt geen idee hoe belangrijk je

bent geweest; je aanwezigheid dwong me om niet te blijven hangen in details,

maar om projecten af te ronden zodat we snel weer naar Artis konden. Ik hou

van jou ook.

Thank you all for the wonderful time I had in my late twenties and early thirties.

It was epic.

Victor

Amsterdam, September 2019

i
i

i
i

i
i

i
i

Contents

Acknowledgements ix

Contents xiii

Publications xix

1 Introduction 1

2 PathArmor 9

2.1 Introduction . 10

2.2 Context-Sensitive CFI . 12

2.2.1 Legal Flows . 12

2.2.2 Challenges . 14

2.3 PathArmor . 15

2.3.1 Kernel Module . 17

2.3.2 Path Analyzer . 18

2.3.3 Dynamic Instrumentation 20

2.4 Implementation . 23

2.5 Evaluation . 24

2.5.1 Security . 25

2.5.2 Analysis Time . 30

2.5.3 Runtime Performance 31

2.5.4 LBR Pollution . 33

2.5.5 Memory Usage . 34

2.6 Discussion . 34

2.6.1 History-Flushing Attacks 34

2.6.2 Non-Control Data Attacks 35

2.6.3 Endpoint-Pruning Attacks 35

xiii

i
i

i
i

i
i

i
i

xiv CONTENTS

2.6.4 Instrumentation-Tampering Attacks 36

2.7 Related Work . 36

2.8 Conclusion . 38

3 TypeArmor 41

3.1 Introduction . 42

3.2 Motivation: Key Requirements for COOP 45

3.3 Overview . 46

3.3.1 Threat Model and Assumptions 46

3.3.2 TypeArmor: Invariants for Targets and Callsites 47

3.3.3 TypeArmor’s Impact on COOP 49

3.4 Static Analysis . 50

3.4.1 Callee Analysis . 50

3.4.2 Callsite Analysis . 55

3.4.3 Return Values . 59

3.5 Runtime Enforcement . 60

3.5.1 Shadow Code Memory Preparation 60

3.5.2 CFI Enforcement . 61

3.5.3 CFC Enforcement . 63

3.6 Mitigating Advanced Code-Reuse Attacks 63

3.6.1 E�ectiveness Against COOP 64

3.6.2 Stopping COOP Exploits in Practice 66

3.6.3 Control Jujutsu . 68

3.6.4 COOP Extensions . 68

3.6.5 Pure Data-Only Attacks 70

3.7 Performance . 71

3.8 Security Analysis . 73

3.9 Related Work . 78

3.10 Conclusion . 79

4 VPS 81

4.1 Introduction . 82

4.2 C++ at the Binary Level . 84

4.2.1 Virtual Function Tables 84

4.2.2 C++ Object Initialization 86

4.2.3 C++ Virtual Function Dispatch 87

i
i

i
i

i
i

i
i

CONTENTS xv

4.2.4 VTable Hijacking Attacks 88

4.3 Related Work . 88

4.3.1 Binary-Only Defenses 88

4.3.2 Defenses Requiring Source Code 90

4.4 Threat Model . 91

4.5 System Overview . 91

4.6 Analysis Approach . 92

4.6.1 Vtable Identi�cation . 93

4.6.2 Object Initialization Operations 95

4.6.3 Virtual Callsite Candidates 96

4.6.4 Virtual Callsite Veri�cation 97

4.6.5 Dynamic Virtual Call Pro�ling 100

4.7 Instrumentation Approach . 101

4.7.1 Object Initialization . 101

4.7.2 Virtual Callsites . 102

4.8 Implementation . 103

4.9 Evaluation . 104

4.9.1 Virtual Callsite Identi�cation Accuracy 104

4.9.2 Object Initialization Accuracy 108

4.9.3 Performance . 109

4.10 Discussion . 112

4.10.1 Counterfeit Object-Oriented Programming 112

4.10.2 Limitations . 114

4.11 Conclusion . 115

5 Newton 117

5.1 Introduction . 118

5.2 Threat Model . 120

5.3 Overview of Code-Reuse Defenses 121

5.4 Overview of Newton . 123

5.4.1 Constraints . 125

5.4.2 Write Constraint Manager 126

5.4.3 Target Constraint Manager 127

5.4.4 Command Manager . 127

5.5 Mapping Defenses . 128

5.5.1 Deriving Constraints . 129

i
i

i
i

i
i

i
i

xvi CONTENTS

5.5.2 Implementation . 132

5.6 Evaluation . 136

5.6.1 In-Depth Analysis of nginx 137

5.6.2 Generalized Results . 139

5.7 Constructing Attacks . 142

5.7.1 CsCFI . 142

5.7.2 CPI . 145

5.8 Related Work . 146

5.9 Conclusion . 148

6 Drammer 149

6.1 Introduction . 150

6.2 Threat Model . 152

6.3 Rowhammer Exploitation . 152

6.3.1 Memory Hardware . 153

6.3.2 The Rowhammer Bug 154

6.3.3 Exploitation Primitives 154

6.4 The First Flip . 155

6.4.1 RowhARMer . 155

6.5 Exploitation on the x86 Architecture 157

6.5.1 P1. Fast Uncached Memory Access 157

6.5.2 P2. Physical Memory Massaging 158

6.5.3 P3. Physical Memory Addressing 159

6.5.4 Challenges on Mobile Devices 159

6.6 The Drammer Attack . 161

6.6.1 Mobile Device Memory 161

6.6.2 DMA Bu�er Management 162

6.6.3 Physical Memory Massaging 162

6.6.4 Phys Feng Shui . 163

6.6.5 Exploitable Templates 166

6.6.6 Root Privilege Escalation 167

6.7 Implementation . 168

6.7.1 Android Memory Management 168

6.7.2 Noise Elimination . 168

6.8 Generalization . 169

6.9 Evaluation . 170

i
i

i
i

i
i

i
i

CONTENTS xvii

6.9.1 Mobile Row Sizes . 170

6.9.2 Empirical Study . 171

6.9.3 Root Privilege Escalation 174

6.10 Mitigation and Discussion . 175

6.10.1 Existing Rowhammer Defenses 175

6.10.2 Countermeasures Against Drammer 176

6.11 Related Work . 178

6.12 Conclusion . 179

7 Guardion 181

7.1 Introduction . 182

7.2 Threat Model . 184

7.3 Background . 184

7.3.1 The Rowhammer Vulnerability 185

7.3.2 Rowhammer Exploitation 185

7.3.3 Android Memory Management 186

7.4 Overview of Software-based Defenses 187

7.4.1 Preventing Bit Flips (¬�ips) 187

7.4.2 Preventing Physical Memory Massaging (¬massage) . . . 190

7.5 RAMpage: Breaking the State-of-the-Art 191

7.5.1 Exploiting Non-Contiguous Memory 191

7.5.2 Exploiting System-wide Isolation 193

7.6 GuardION: Fine-grained Memory Isolation 194

7.6.1 Isolating ION’s Contiguous Heap 194

7.6.2 Isolating ION’s System Heap 195

7.6.3 Isolating ION’s CMA Heap 197

7.7 Evaluation . 198

7.7.1 Security Evaluation . 198

7.7.2 Performance and Memory Footprint 198

7.7.3 Patch Complexity and Adoption 200

7.8 Related Work . 201

7.8.1 Rowhammer Attacks . 201

7.8.2 Rowhammer Defenses 201

7.9 Conclusion . 202

8 Conclusion 205

i
i

i
i

i
i

i
i

xviii CONTENTS

References 213

Conference Proceedings . 213

Articles . 224

Books . 225

Technical Reports and Documentation 225

Online . 226

Talks . 229

Source code . 229

Summary 231

Samenvatting 233

i
i

i
i

i
i

i
i

Publications

Parts of this dissertation have been published earlier. The text in this thesis dif-

fers from the published versions in minor editorial changes that were made to

improve readability. The following publications form the core of this thesis.

V. van der Veen, D. Andriesse, E. Göktaş, B. Gras, L. Sambuc, A. Słowińska, H. Bos,

and C. Giu�rida. Practical context-sensitive CFI. In Proceedings of the 22nd

ACM Conference on Computer and Communications Security (CCS). Oct. 2015.

[Appears in Chapter 2.]

V. van der Veen, E. Göktaş, M. Contag, A. Pawlowski, X. Chen, S. Rawat, H. Bos, T.

Holz, E. Athanasopoulos, and C. Giu�rida. A tough call: Mitigating advanced
code-reuse attacks at the binary level. In Proceedings of the 37th IEEE Sympo-
sium on Security and Privacy (S&P). May 2015.

[Appears in Chapter 3.]

A. Pawlowski, V. van der Veen, D. Andriesse, E. van der Kouwe, T. Holz, and C.

Giu�rida. VPS: Excavating high-level C++ constructs from low-level bina-
ries to protect dynamic dispatching. In Proceedings of the 35th Annual Com-
puter Security Applications Conference (ACSAC). Dec. 2019.

[Appears in Chapter 4.]

V. van der Veen, D. Andriesse, M. Stamatogiannakis, X. Chen, H. Bos, and C. Giuf-

frida. The dynamics of innocent �esh on the bone: Code reuse ten years
later. In Proceedings of the 24th ACM Conference on Computer and Communica-
tions Security (CCS). Oct. 2017.

[Appears in Chapter 5.]

xix

i
i

i
i

i
i

i
i

xx PUBLICATIONS

V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice, G. Vigna,

H. Bos, K. Razavi, and C. Giu�rida. Drammer: Deterministic rowhammer
attacks on mobile platforms. In Proceedings of the 23rd ACM Conference on
Computer and Communications Security (CCS). Oct. 2016.

[Appears in Chapter 6.]

V. van der Veen, M. Lindorfer, Y. Fratantonio, H. P. Pillai, G. Vigna, C. Kruegel, H.

Bos, and K. Razavi. GuardION: Practicalmitigation of DMA-based rowham-
mer attacks on ARM. In Proceedings of the 15th Conference on Detection of In-
trusions and Malware & Vulnerability Assessment (DIMVA). Jun. 2018.

[Appears in Chapter 7.]

The following publications are not included in this dissertation.

S. Neuner, V. van der Veen, M. Lindorfer, M. Huber, G. Merzdovnik, M. Schmiedecker,

and E. Weippl. Enter sandbox: Android sandbox comparison. In Proceedings
of the 3rd IEEE Mobile Security Technologies Workshop (MoST). May 2014.

M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio, V. van der

Veen, and C. Platzer. ANDRUBIS - 1,000,000 apps later: A view on cur-
rent Androidmalware behaviors. In Proceedings of the 3rd International Work-
shop on Building Analysis Datasets and Gathering Experience Returns for Security
(BADGERS). Sep. 2014.

R. K. Konoth, V. van der Veen, and H. Bos. How anywhere computing just
killed your phone-based two-factor authentication. In Proceedings of the
20th International Conference on Financial Cryptography and Data Security (FC).
Feb. 2016.

A. Coletta, V. van der Veen, and F. Maggi. DroydSeuss: A mobile banking
trojan tracker - short paper. In Proceedings of the 20th International Conference
on Financial Cryptography and Data Security (FC). Feb. 2016.

i
i

i
i

i
i

i
i

PUBLICATIONS xxi

D. Andriesse, X. Chen, V. van der Veen, A. Słowińska, and H. Bos. An in-depth
analysis of disassembly on full-scale x86/x64 binaries. In Proceedings of the
25th USENIX Security Symposium (USENIX SEC). Aug. 2016.

A. Pawlowski, M. Contag, V. van der Veen, C. Ouwehand, T. Holz, H. Bos, E.

Athanasopoulos, and C. Giu�rida. MARX: Uncovering class hierarchies in
C++ programs. In Proceedings of the 24th Annual Network and Distributed System
Security Symposium (NDSS). Feb. 2017.

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

IN
TR

O
D

U
C

TI
O

N

1 Introduction

It is 1988. The Internet is at its inception. Sir Tim Berners-Lee needs at least one

more year before he will propose the WorldWideWeb — Google does not exist for

another decade. Users are mostly well-behaved intellects, primarily academics,

who work for universities or research organizations. Among the most popular

Internet services is Usenet, a worldwide distributed discussion system. Instead of

tweeting, a verb that is still reserved exclusively for birds, users share information

by reading and posting messages to Usenet categories, known as newsgroups. It

is November 3 when Peter Yee, a researcher at NASA Ames, posts the following

to the comp.protocols.tcp-ip group.

Internet VIRUS alert.

We are currently under attack from an Internet VIRUS. It has hit UC

Berkeley, UC San Diego, Lawrence Livermore, Stanford, and NASA

[. . .]. This program copies [. . .] binaries that try to replicate the virus

via connections to TELNETD, FTPD, FINGERD, RSHD, and SMTP.

[. . .] For now turning o� the above services seems to be the only

help.

The warning came too late. In only a couple of hours, thousands of systems got

infected and reached a complete halt. Estimates suggest that the virus spread

across ten percent of all 60,000 computers attached to the Internet, putting the

cost of the damage at the range of $100,000 to $10,000,000. As regional networks

disconnected from the backbone while cleaning their machines, normal activity

was severely disrupted and connectivity was impeded for days. The Internet just

lost its innocence.

The cause of this problem was Robert Morris, at the time a 22-year-old grad-

uate student at Cornell University. Morris, not one of the well-behaved intellects

yet, started his attempt to “gauge the size of the Internet” on Wednesday evening,

November 2, 1988. By exploiting a number of known vulnerabilities in core sys-

tem services, his code could spread from machine to machine without any user

1

i
i

i
i

i
i

i
i

2 CHAPTER 1. INTRODUCTION

interaction. While this approach should be considered unorthodox at the very

least, it was ultimately a programming error that turned his attempt at running

a relatively harmless measurement study into an attack with devestating conce-

quences.

The virus that would later became known as the Morris Worm, was an iconic

event in Internet history. Morris himself can claim the dishonorable award of be-

ing the �rst person to be tried and convicted under the 1986 Computer Fraud and

Abuse Act. More revolutionary though, is that his actions obliterated the com-

placency of computer security being mostly a theoretical problem. The Morris

Worm forced software vendors to anticipate more proactively on reported secu-

rity �aws in their products. It galvanized the �eld of security research, creating a

demand in both industry and academia. As we will see shortly, computer attacks

have been on a resurgence ever since, and many of us computer security ‘experts’

�ghting these, can trace their roots back to the events of November 1988.

Showing his intellectual capabilities, Morris later became a successful en-

trepreneur, being involved in the selling of Viaweb to Yahoo for $49 million in

1998. He currently holds a position at MIT and is a well-established colleague in

the security community.

Memory Errors

One of the vulnerabilities that Morris exploited was a memory error, a (software)

bug that corrupts the program’s internal memory state. At that time, the code

for fingerd — a remote user information server — accepted an arbitrary large

input from untrusted sources. By providing more bytes than fingerd expected,

the Morris Worm triggers a bu�er over�ow. This allows the worm to overwrite

memory that it should not have access to, including a return address: a data value

that the CPU uses as a bookmark to jump back to. By corrupting the return

address so that it would point to his own input, Morris was able to divert control
�ow of the program. He dictates the CPU to start executing instructions that he
provided, instead of those of the actual program. This allowed him to take full

control over the program and thus the remote server.

Memory errors are among the oldest classes of software vulnerabilities. To

date, the research community has proposed and developed a number of di�erent

approaches to eradicate or mitigate memory errors and their exploitation. From

safe languages, which remove the vulnerability entirely [67, 166], and bounds

checkers, which check for out-of-bounds accesses [6, 69, 117, 149], to counter-

measures that prevent certain memory locations to be overwritten [31, 36], de-

i
i

i
i

i
i

i
i

MEMORY ERRORS

IN
TR

O
D

U
C

TI
O

N

3

tect code injections at early stages [108], or prevent attackers from �nding [13,

209], using [159, 72], or executing [205, 234] injected code.

Despite over three decades of independent, academic, and industrial research

e�orts, memory errors still undermine the security of our systems. This is true

even if we consider only classic bu�er over�ows: this class of memory errors

has been lodged in the top-3 of the top 25 most dangerous software errors for

years [206, 215]. Experience shows that attackers, motivated nowadays by pro�t

rather than fun [180], have been e�ective at �nding ways to circumvent protec-

tive measures [45, 167]. Many attacks today start with a memory corruption that

provides an initial foothold for further infection.

To make matters even worse, memory errors are no longer limited to the

software domain. In 2014, Rowhammer was introduced. This disturbance error

is the result of the ever increasing density of memory chips, a necessity to be

able to put more and faster DRAM memory in new devices. However, assem-

bling memory cells — tiny capacitors — closer to each other, makes them prone

to leaking charge into adjacent cells on memory accesses. By repeatedly access-

ing, i.e., “hammering”, the same cell over and over again, a neighboring cell may

lose its charge faster than it should, causing a bit to �ip. The Rowhammer bug al-

lows an attacker to �ip a bit in memory without requiring access to that memory

location [76]. Ever since its discovery, researchers used Rowhammer-based mem-

ory corruptions to exploit a variety of ecosystems, including the desktop [216],

browser [19, 59], and even the cloud [114].

Figure 1.1 puts this emerging trend into perspective. By searching for certain

keywords in the summary description of each Common Vulnerability and Ex-

posure (CVE) entry in the National Vulnerability Database
1
, we can distinguish

memory errors from other vulnerabilities. In Figure 1.1, we use this to display the

absolute number of memory errors that are reported every six months, over the

course of the last two decades. The plot depicts a substantial in�ux of memory

errors, steadily increasing in numbers over time.

Looking at Figure 1.1, it is tempting to try and identify di�erent eras in mem-

ory error history: starting with the outset, we see linear growth in the number

of CVEs from 1998 to 2008. We then entered the redemption, a period of 7 years

(2008–2015) where the expansion came to a halt and the trend maybe even went

down a bit. A cause may be the enormous increase of web vulnerabilities, as this

was the time that the Web 2.0 really took of [133]. Since 2015, we experience

the resurgence. We notice an exponential growth of memory errors that is still

continuing today: in the �rst half of 2018 (not plotted in the �gure), a massive

1
https://nvd.nist.gov/

https://nvd.nist.gov/

i
i

i
i

i
i

i
i

4 CHAPTER 1. INTRODUCTION

300

600

900

1,200

1,500

1998 2002 2006 2010 2014 2018

M
em

or
y

Er
ro

rs

Time

Figure 1.1. Absolute number of memory error vulnerabilities (CVEs), reported per 6 months,
over the course of two decades. This plot shows that, a�er a decade of linear
growth, followed by a brief stagnation, we currently experience an exponential
increase in memory errors.

number of 1,441 memory errors have been reported. Without proper evaluation

of these records, we can only speculate on what causes this. One possibility may

be that security research shifted from �nding web vulnerabilities to testing Inter-

net of Things (IoT) devices; these appliances are often programmed in low-level

programming languages like C and C++, making them more vulnerable to bu�er

over�ows than SQL-injection attacks.

Figure 1.2 shows the relative number of reported memory error vulnerabil-

ities. It also includes the portion of memory error exploits — scraped from the

exploitdb database.
2

The trend that we witness here is more stable than those for

absolute numbers discussed before: for two decades, roughly 20% of all vulnera-

bilities and exploits are related to memory errors.

Figures 1.1 and 1.2 show that 30 years after Morris released one of the �rst

memory error attacks, these vulnerabilities are still relevant today and that there

is no sign that this will change anytime soon. Combined with our knowledge

about the Morris Worm — memory errors can have a devastating impact — it

justi�es academic research on these type of vulnerabilities. If launched today, a

Morris Worm 2.0, i.e., an outbreak that dismantles 10% of the Internet, will have

consequences that are orders of magnitude worse than those in November 1988.

2
https://www.exploit-db.com/

https://www.exploit-db.com/

i
i

i
i

i
i

i
i

GOALS

IN
TR

O
D

U
C

TI
O

N

5

0%

10%

20%

30%

40%

50%

1998 2002 2006 2010 2014 2018

M
em

or
y

Er
ro

rs

Time

Vulnerabilities
Exploits

Figure 1.2. Relative number of memory error vulnerabilities (in red) and exploits (in dashed
blue), reported per six months, over the course of two decades. This plot shows
that memory errors make up around 20% of all vulnerabilities and exploits, ever
since we started to keep track of them.

Goals

The goal of this work is to study and advance computer security defenses that

primarily focus on preventing memory-error-based exploitation. We approach

this from both the software and hardware level.

Software errors. The �rst part of this thesis dissects and improves the state

of the art in defenses against one of the most advanced types of memory-error

exploits: code-reuse attacks. Code-reuse attacks are the mature version of Morris’

fingerd exploit. They are the result of a cat-and-mouse game between attackers

and defenders that took place over the past two decades. They are responsible

for some of the most impactful outbreaks we witnessed in recent history [172,

133].

Hardware errors. In the second part of this thesis, we study a relatively young

hardware-based memory error: the Rowhammer bug. We explore how Rowhammer-

based attacks and defenses behave on mobile platforms. We are the �rst to un-

ravel that bit �ips on Android devices are possible and that attackers can use

these to mount powerful memory-corruption exploits on mobile platforms.

i
i

i
i

i
i

i
i

6 CHAPTER 1. INTRODUCTION

Organization

This dissertation makes several contributions, most with published results in ref-

ereed conferences (Page xix). The following provides a brief summary of these

and acts an an global outline for the remainder of this thesis. Note that parts

of this introduction, speci�cally the experiments related to Figures 1.1 and 1.2,

as well as some of the text on memory errors, are based on prior work that was

already published before the start of this dissertation [133].

We study memory errors across two dimensions. First, Chapters 2 to 5 fo-

cus on a particular topic in the area of software-based memory errors: code-

reuse attacks. In contrast, Chapters 6 and 7 concentrate on a speci�c instance of

hardware-based memory errors on mobile platforms: the Rowhammer bug.

Chapter 2 presents Patharmor, a context-sensitive Control-Flow Integrity (CFI)

implementation, aimed at protecting binaries without requiring access to their

source code. The key idea is to rely on hardware extensions for recording a trace

of recently executed branches. Then, just before the execution of a sensitive

endpoint, the recorded “path” leading towards this endpoint is matched against

the program’s internal control-�ow graph, ensuring that no control-�ow diver-

sion can take place. Patharmor deploys signi�cantly stronger invariants than

context-insensitive CFI, without incurring a major performance impact.

Chapter 2 appeared in the Proceedings of the 22nd ACM Conference on Computer
and Communications Security (CCS 2015) [131]. Patharmor was nominated for

the Dutch Cyber Security best Research Paper (DCSRP) Award at ICT.OPEN in

2016 [193].

Chapter 3 presents Typearmor, a binary-level CFI implementation that recon-

structs a conservative approximation of function and callsite prototypes to re-

duce the number of allowed targets on the forward edge. For possible targets,

Typearmor relies on use-def analysis to compute theminimum number of param-

eters that this function consumes. Similarly, liveness analysis at indirect callsites

yields themaximum number of arguments that they prepare. The many-to-many

relationship between callsites and target callees that we then derive — a callsite
that prepares at most n arguments may never invoke a function that consumes at
least n+ 1 arguments — achieves a much higher precision than prior solutions.

Chapter 3 appeared in the Proceedings of the 37th IEEE Symposium on Security
and Privacy (S&P 2016) [135].

Chapter 4 presents vps, a binary-level defense against vtable hijacking in C++

applications. vps achieves accurate protection by restricting virtual callsites to

i
i

i
i

i
i

i
i

ORGANIZATION

IN
TR

O
D

U
C

TI
O

N

7

validly created objects. More speci�cally, vps ensures that virtual callsites can

only use objects that are created at valid object construction sites. vps prevents

wrongly identi�ed virtual callsites from breaking the binary, an issue most pre-

vious work do not consider.

Chapter 4 appeared in the Proceedings of the 35th Annual Computer Security Ap-
plications Conference (ACSAC 2019).

Chapter 5 presents Newton, a runtime gadget-discovery framework based on

constraint-driven dynamic taint analysis. The key insight in Newton is that we

can model the capabilities of a powerful attacker — one with arbitrary memory

read/write primitives — by means of dynamic taint analysis. In particular, we

taint all bytes that an attacker can modify with a unique color and then track the

�ow of taint until we reach code that, given the right values for the tainted bytes,

allows the attacker to launch a code-reuse attack. Newton can model a broad

range of code-reuse defenses by mapping their properties into simple, stackable,

reusable constraints, and automatically generate gadgets that comply with these.

Using Newton, we systematically map and compare state-of-the-art defenses,

demonstrating that even simple interactions with popular server programs are

adequate for �nding gadgets for all state-of-the-art code-reuse defenses.

Chapter 5 appeared in the Proceedings of the 24th ACM Conference on Computer
and Communications Security (CCS 2017) [132]. In 2017, Newton won the Best
Presentation Award (presented by co-author Manolis Stamatogiannakis) at the

Cyber SecurityWorkshop in the Netherlands. In 2018,Newtonwas nominated for

the Dutch Cyber Security best Research Paper (DCSRP) Award at ICT.OPEN [195].

Chapter 6 presents Drammer, a deterministic Rowhammer attack on mobile

platforms. Drammer shows that the Rowhammer bug — a DRAM disturbance

error that allows an attacker to �ip a single bit in memory not under the attacker’s

control — is prevalent on platforms other than x86. By carefully massaging phys-

ical memory, we exploit a single bit �ip to mount a deterministic privilege esca-

lation exploit without having to rely on esoteric operating system features, like

memory deduplication, as used in prior work.

Chapter 6 appeared in the Proceedings of the 23rd ACM Conference on Computer
and Communications Security (CCS 2016) [134]. As the attack was carried out

on an Android device, Google assigned CVE-2016-6728 to refer to Drammer. In

2017, Drammer gathered international media coverage and won multiple awards:

the Applied Research Best Paper Award at CSAW, region North America [208], the

Pwnie for Best Privilege Escalation Bug at Blackhat US [211], and the Dutch Cyber
Security best Research Paper (DCSRP) Award at ICT.OPEN [194]. Drammer was

i
i

i
i

i
i

i
i

8 CHAPTER 1. INTRODUCTION

also nominated for a Pwnie in the category Most Innovative Research at Blackhat

US [210].

Chapter 7 presents Rampage and Guardion. Rampage elaborates on Drammer

and shows that the deployed mitigations in Android are not su�cient in stopping

mobile Rowhammer attacks. It consists of a set of DMA-based o�enses against

the latest Android OS, including (1) a renewed root exploit, and (2) a series of

app-to-app exploit scenarios. Guardion is a lightweight defense that prevents

DMA-based attacks by isolating physical memory of DMA bu�ers with guard

rows.

Chapter 7 appeared in the Proceedings of the 15th Conference on Detection of In-
trusions and Malware & Vulnerability Assessment (DIMVA 2018) [136]. Google

assigned CVE-2018-9442 to refer to Rampage. In 2018, Rampage and Guardion

gained international media attention and won the Best Research Award at the In-

ternational Conference on Computing Systems (CompSys 2018). Rampage was

nominated for a Pwnie in the category Best Privilege Escalation Bug at Blackhat

US 2018 [212].

Chapter 8 concludes this dissertation, summarizes results, analyzes limitations,

and discusses future research directions.

i
i

i
i

i
i

i
i

PA
TH

A
R

M
O

R2 Practical
Context-Sensitive CFI

Current Control-Flow Integrity (CFI) implementations track control edges indi-

vidually, insensitive to the context of preceding edges. Recent work demonstrates

that this leaves su�cient leeway for powerful ROP attacks. Context-sensitive

CFI, which can provide enhanced security, is widely considered impractical for

real-world adoption. This chapter shows that Context-sensitive CFI (CCFI) for

both the backward and forward edge can be implemented e�ciently on com-

modity hardware. We present Patharmor, a binary-level CCFI implementation

which tracks paths to sensitive program states, and de�nes the set of valid con-

trol edges within the state context to yield higher precision than existing CFI im-

plementations. Even with simple context-sensitive policies, Patharmor yields

signi�cantly stronger CFI invariants than context-insensitive CFI, with similar

performance.

9

i
i

i
i

i
i

i
i

10 CHAPTER 2. PATHARMOR

2.1 Introduction

Control-Flow Integrity (CFI) [2] has developed into one of the most promising

techniques to stop code-reuse attacks against C and C++ programs. Typically,

such attacks circumvent common defenses such as DEP/W⊕X by diverting a pro-

gram’s control �ow to a set of Return-Oriented Programming (ROP) gadgets [27,

124]. Likewise, they defeat widely deployed ASLR by either targeting gadgets

at �xed (non-randomized) addresses [18], or by dynamically disclosing the ad-

dresses of randomized gadgets [126]. CFI promises to prevent all such attacks

by ensuring that all control transfers conform to the program’s original Control

Flow Graph (CFG). In theory, CFI is very powerful and, in its purest and ideal

form, provably secure against most integrity violations of the control �ow [1].

Ten years after the original CFI proposal [2], however, researchers are still

working to �nd practical CFI implementations [30, 181, 83, 102, 130, 154, 157],

able to approximate the security of the purest form of CFI with acceptable per-

formance. Common CFI solutions, including state-of-the-art binary-level imple-

mentations such as bin-CFI [157] and CCFIR [154], attempt to substantially relax

constraints on the set of legal targets for both the backward (e.g., ret instruc-

tions) and forward (e.g., indirect call instructions) control edges. While doing

so reduces the performance overhead to a few percent only, it also provides more

degrees of freedom for the attackers. Other even more lightweight CFI solutions,

such as ROPecker [30] and kBouncer [102], build on heuristics and hardware sup-

port to detect anomalous control �ows—which resemble ROP gadget chains—and

stop many current exploitation attempts at low performance overheads. Unfortu-

nately, a string of recent publications comprehensively shows that it is possible

to circumvent all these lightweight CFI solutions with relatively little e�ort [26,

43, 57, 58, 121].

A key problem with traditional CFI solutions — even recent source-level �ne-

grained ones [130] — is that they enforce only context-insensitive CFI policies,

which examine control edges in isolation and attempt to statically derive the re-

sulting superset of all the possible targets according to the CFG. The lack of con-

text inevitably results in weak CFI invariants, allowing attackers to freely chain

edges together and form paths that are even trivially infeasible in the original

CFG (e.g., returning to a function never on the active call stack [57]).

Context-sensitive CFI techniques are a promising way to address this prob-

lem, since they rely on context-sensitive static analysis to associate CFI invari-

ants to control-�ow paths—i.e., multiple consecutive edges—in the CFG and en-

force such invariants on execution paths at runtime. The stronger security guar-

i
i

i
i

i
i

i
i

2.1. INTRODUCTION

PA
TH

A
R

M
O

R

11

antees provided by context-sensitive CFI techniques have been acknowledged

as early as in the original CFI proposal, but their real-world adoption has been

rapidly dismissed as impractical [2].

In this chapter, we demonstrate that Context-sensitive CFI (CCFI) can indeed

be implemented in an e�cient, reliable, and practical way for real-world appli-

cations. We present Patharmor
1
, the �rst binary-level CCFI solution which en-

forces context-sensitive CFI policies on both the backward and forward edges.

Patharmor relies on hardware support to e�ciently and reliably monitor ex-

ecution paths to sensitive functions which can be used to mount control-�ow

diversion attacks [102], and uses a carefully optimized binary instrumentation

design to enforce CCFI invariants on the monitored paths. Patharmor’s path

invariants are derived by a scalable context-sensitive static analysis performed

over the CFG on-demand, which uses caching of path veri�cation steps to achieve

high e�ciency. Veri�cation itself is also very e�cient, since all the CFI checks

are batched at sensitive program points.

To show the practicality of our design, we have prototyped two context-

sensitive and binary-level CFI policies (for the backward and forward edges,

respectively) on top of Patharmor. Moreover, our framework can also serve

as a general foundation for even stronger CCFI implementations, for instance

using context-sensitive data-�ow analysis at the source level. Even in the cur-

rent setup, Patharmor provides a comprehensive CCFI protection system with

much stronger security guarantees than traditional CFI solutions, while match-

ing or even improving their performance. Moreover, due to its optimized de-

sign, Patharmor can also serve as an e�cient basis for �ne-grained context-

insensitive CFI (CCFI) policies.

Contributions Our contribution is threefold:

• We identify the key challenges towards practical CCFI implementations

and investigate opportunities to address these challenges in real-world ap-

plications and commodity platforms.

• We present Patharmor, a framework to support context-sensitive and

context-insensitive CFI policies on commodity platforms. To ful�ll its goals,

Patharmor relies on hardware support, binary instrumentation, and on-

demand static analysis to batch even sophisticated CFI checks at the rele-

vant sensitive points in a binary. We complement our solution with �ne-

grained CCFI policies and simple but comprehensive (backward and for-

1
Patharmor is open source, available via https://github.com/vusec/patharmor

https://github.com/vusec/patharmor

i
i

i
i

i
i

i
i

12 CHAPTER 2. PATHARMOR

ward edge) CCFI policies, making Patharmor the �rst practical end-to-end

CCFI implementation.

• We evaluate Patharmor using popular server applications and the SPEC

CPU2006 benchmarks. Our results show that Patharmor can signi�cantly

restrict the number of legal control �ows compared to traditional CFI solu-

tions (−70% across all our applications, geometric mean), while yielding

bounded memory usage (+18-74 MB on our applications) and low runtime

performance overhead (3% on SPEC and 8.4% on our applications, geomet-

ric mean).

2.2 Context-Sensitive CFI

The general goal of every CFI solution is to allow all the control �ows which

occur in the interprocedural control-�ow graph (CFG) de�ned by the program-

mer, and reject the largest possible fraction of the other �ows as illegal [2]. This

section formalizes the de�nition of a legal �ow adopted in existing practical CFI

solutions, contrasts it with the stricter de�nition adopted in Context-sensitive

CFI (CCFI), and details the key challenges towards practical CCFI.

2.2.1 Legal Flows

We model a CFG as a digraph G = (V,E) where V is the set of basic blocks,

and E the set of control edges in the CFG de�ned by the program.

Traditional CFI [2] enforces that each individual (indirect) control transfer

taken by the program during the execution must match an edge in the CFG:

Context-insensitiveCFI (CCFI). For each control transfer ei = (vx, vy) between
basic blocks vx and vy , CCFI enforces that ei ∈ E.

In other words, CCFI checks conformance to the current position in the CFG

and does not distinguish between di�erent paths in the CFG that lead to a given

control transfer. For instance, consider the two code paths that both lead to the

execution of a function Z in Figure 2.1. Disregarding the context would allow

function Z to return to either B or D. However, we should only allow a return

(backward edge) to B, when coming from A (and B). Likewise, we should only

allow a return to D if the program got there via C .

We can easily construct a similar example for the CFG’s forward edges, for

instance by considering callbacks. Suppose B and D both call Z with callback

argument cbB and cbD , respectively. When Z invokes the callback, CCFI would

i
i

i
i

i
i

i
i

2.2. CONTEXT-SENSITIVE CFI

PA
TH

A
R

M
O

R

13

1 A() {
2 indirect call to B();
3 }
4

5 B() {
6 indirect call to Z();
7 }

1 C() {
2 indirect call to D();
3 }
4

5 D() {
6 indirect call to Z();
7 }

Figure 2.1. Two code paths that both lead to the execution of function Z.

allow either of the (cbB and cbD) targets, while taking the context into consider-

ation would allow us to (rightly) conclude that cbB is only legal if we reached Z

via B.

To mimic context-sensitive behavior to some degree (backward edges only)

a number of existing CFI solutions complement their operations with a shadow

stack [13, 29, 31, 35, 47, 111, 115, 184, 150]. However, shadow stacks are typically

expensive at the binary level [29, 41, 184]. Moreover, unlike CFI techniques, their

security relies on the integrity of in-process runtime information, which state-of-

the-art implementations typically protect using system-enforced ASLR—with its

known security limitations and probabilistic guarantees against arbitrary mem-

ory write vulnerabilities. All the other existing CFI solutions, in turn, implement

fully context-insensitive (CCFI) policies as described above.

In addition, state-of-the-art binary-level CFI solutions, such as CCFIR [154]

or binCFI [157], further relax their CCFI policies for performance reasons. These

context-insensitive implementations group control transfer sources and destina-

tions based on a general de�nition of type, and enforce that the source and des-

tination type match:

Practical CCFI. For each control transfer ei = (vx, vy) between basic blocks vx
and vy , practical CCFI ensures x ∈ sources(type(ei)) ∧ y ∈ sinks(type(ei)),
where sources(τ) and sinks(τ) denote the sets of program locations having out-
bound or inbound edges of type τ , respectively.

Practical CCFI precludes malicious control transfers like jumps into the mid-

dle of a function, or returns to non-call sites. Attackers, however, can still suc-

cessfully mount powerful attacks using gadgets which adhere to the imposed

type restrictions [25, 26, 43, 57, 121].

CCFI provides stronger CFI invariants than both practical and ideal CCFI.

Rather than considering control transfers individually, CCFI examines each trans-

fer in the context of recently executed transfers:

i
i

i
i

i
i

i
i

14 CHAPTER 2. PATHARMOR

CCFI. Given a path p = (e1, e2, . . . , en) of control transfers leading to a given pro-
gram point P , CCFI veri�es the validity of P by checking that ∀i ∈ {1, 2, . . . , n},
edge ei is consecutively valid in the context of all preceding CFG edges e1, . . . , ei−1.

Since CFI checks are enforced per path (rather than per edge), CCFI can enable

arbitrarily powerful context-sensitive policies on both the backward and forward

edges.

2.2.2 Challenges

In this section, we discuss the three fundamental challenges towards practical

CCFI, and in the remainder of the chapter, we present Patharmor—the �rst prac-

tical binary-level solution to these problems—proving CCFI e�ective in practice.

C1. E�cient path monitoring A major challenge in implementing a practi-

cal CCFI solution is identifying an e�cient mechanism to constantly monitor

paths of executed control �ow transfers at runtime. Other than imposing mini-

mal performance overhead, the path monitoring mechanism should also be reli-

able, that is neither the program nor the attacker should be able to tamper with

the recorded data. All these requirements were considered the key obstacle to

the real-world adoption of context-sensitive CFI in the original CFI proposal [2].

To address this challenge, Patharmor relies on branch recording features

available in modern x86_64 processors to implement an e�cient and reliable path

monitoring mechanism at runtime.

C2. E�cient path analysis To verify the validity of a path towards a given

program point P , CCFI needs to statically analyze the CFG and identify the le-

gal paths towards P in a context-sensitive fashion, validating all the edges in

the path. The naive solution—statically enumerating all the legal paths towards

all the relevant program points—cannot scale e�ciently to large and complex

CFGs, with the number of paths growing exponentially with |V | and |E|. This

path explosion problem is well known in several application domains (symbolic

execution, among others [82]). Even focusing our static analysis on a particular

program point and sequence of indirect control transfers derived by runtime in-

formation only partially eliminates this problem. Path explosion can still occur

between any two indirect control edges, especially in presence of loops and long

sequences of direct jumps and calls.

To address this challenge, Patharmor relies on an on-demand, constraint-

driven context-sensitive static analysis over a normalized CFG representation.

The constraints, derived by runtime information recorded by our path monitor,

i
i

i
i

i
i

i
i

2.3. PathArmor

PA
TH

A
R

M
O

R

15

allow our context-sensitive path analysis to e�ciently scale to arbitrarily large

and complex CFGs.

C3. E�cient path veri�cation To detect control-�ow diversion attacks, CCFI

needs to carefully select program points to verify the current execution path

for validity. To provide strong security guarantees, path veri�cation needs to

be performed in all the possible execution states that are potentially harmful.

The naive solution—performing path veri�cation after every executed control

transfer—is clearly ine�cient and scales poorly with the path length.

To address this challenge, Patharmor relies on a kernel module to e�ciently

verify only the paths to well-de�ned sensitive functions in the program. While

the veri�cation still needs to run for each path to these functions encountered

during the execution, Patharmor aggressively caches veri�cation results to min-

imize the resulting impact on runtime performance. Since the number of paths

to sensitive functions is limited in practice (as shown in Section 2.5.2 for pop-

ular server programs), caching is e�ective in amortizing path veri�cation costs

throughout the execution.

2.3 PathArmor

Figure 2.3 presents the high-level overview of Patharmor and details its three

main components: (1) a kernel module, (2) an on-demand static analyzer, and (3)

an instrumentation component.

Patharmor relies on a kernel module which provides a Branch Record core

to support per-thread control transfer monitoring in multi-process and multi-

threaded programs. For this purpose, our module uses the 16 Last Branch Record
(LBR) registers available in modern Intel processors and only accessible from ring

0. This strategy allows our module to monitor paths of (16) recently exercised

control transfers in an e�cient and reliable way (addressing C1).

In addition to path monitoring, our kernel module triggers path veri�cation

steps upon security-sensitive system calls issued by the program—but also other

special sensitive operations, as detailed later. To further improve the perfor-

mance of path veri�cation, our module also maintains a path cache, which stores

hashes of previously veri�ed paths and eliminates the need to enforce more ex-

pensive CCFI checks at each veri�cation (addressing C3). We discuss our kernel

module in more detail in Section 2.3.1.

Once the kernel module is loaded, protected program binaries run with the

dynamic instrumentation component. This component �rst starts our path an-
alyzer, an external trusted component which runs in the background and waits

i
i

i
i

i
i

i
i

16 CHAPTER 2. PATHARMOR

Dynamic
instrumentation

PathArmor module Path cache

(JIT) Static analysis

Kernel

Process

Figure 2.3. High-level overview of Patharmor. Before a protected process can execute a
sensitive endpoint, our Patharmor module instructs a just-in-time analysis to
validate whether the most recently executed branches form a legal path in the
process’ control-flow graph. Valid paths are hashed and stored in a small cache for
fast lookups. Dynamic instrumentation provides the process with an in-program
communication channel with our module.

for path veri�cation requests from the kernel module via a dedicated upcall inter-

face. To satisfy path veri�cation requests, our analyzer receives all the necessary

LBR-based path information—and constraints on indirect but also interprocedu-

ral direct control transfers—from our kernel module and performs static analysis

on-demand to enforce our CCFI policies. For this purpose, the analyzer needs

to reconstruct the CFG of the target binary and preprocess it with a preliminary

CFG reduction step that prunes all the irrelevant intraprocedural edges from the

control-�ow graph. This step and our constraint-based strategy eliminate all

the intraprocedural and interprocedural (respectively) path explosion threats, en-

suring a scalable on-demand path analysis (addressing C2). After determining

whether a path is valid, our analyzer reports its �ndings back to the kernel mod-

ule, which, in response, stops the program (if veri�cation fails) or populates the

path cache (otherwise). We elaborate more on our path analyzer in Section 2.3.2.

After initializing Patharmor’s path analyzer, our dynamic instrumentation
component sets up an in-program communication channel with the kernel mod-

ule to enable (and later manage) path monitoring for the target binary. Finally,

our instrumentation component instruments the binary according to a prede-

termined sensitive path termination policy. Patharmor can, in principle, be

con�gured to verify either entire paths to sensitive system calls or limit such

paths to the library call interface. The current Patharmor implementation uses

the latter mode of operation by default, given that, on commodity hardware, the

i
i

i
i

i
i

i
i

2.3. PathArmor

PA
TH

A
R

M
O

R

17

LBR can only record the 16 most recently executed control transfers and allowing

branch tracing inside the libraries can potentially “pollute” paths and thus “erase”

program context—an observation also made in prior work [102]. The trade o�—

which can, however, be reconsidered with future hardware extensions—is that

Patharmor’s default con�guration can defend against control-�ow diversion at-

tacks only in the program, excluding those originating from vulnerabilities in the

libraries from the threat model. For completeness, we evaluate the feasibility of

future in-library path tracking in Section 2.5.4. We discuss our instrumentation

component in more detail in Section 2.3.3.

2.3.1 Kernel Module

As illustrated in Figure 2.3, the kernel module consists of two main components:

(1) a system call interceptor that sends validation requests (via a cache) to the on-

demand static analyzer, and (2) a Branch Record core (LBR API) that monitors

and records branches occurring within the target’s main address space.

System call interception As mentioned in Section 2.2.2, Patharmor limits ver-

i�cation to a small number of security sensitive path endpoints in order to main-

tain minimal runtime overhead. In particular, these endpoints consist of a set of

dangerous system calls an attacker requires to deploy a meaningful exploit, like

exec and mprotect (and other dedicated sensitive operations, see Section 2.3.3).

We refer to them as sensitive calls. Like other work in this area [30], we propose

to detect only these dangerous endpoints, rather than every possible library and

system call.

To intercept system calls at runtime, the kernel module installs an alternative

syscall handler. When our target requests execution of a dangerous system call,

we pause execution, collect LBR data, and forward it to the on-demand static

analyzer in user space. If the analyzer returns true (meaning that the path was

found in the CFG and thus is valid), the kernel module stores a hash of the path

in a cache data structure before permitting the system call. We use cryptographi-

cally secure second-preimage resistant hash algorithms (MD4 in our evaluation)

to prevent path crafting attacks, where attackers craft an invalid path with a hash

that collides with that of a valid path: For a second-preimage resistant hash al-

gorithm h and input x, it is computationally hard to �nd a second input x′ 6= x

such that h(x) = h(x′).

If the exact same path is executed a second time, Patharmor looks for its

hash in the cache, and only sends a request to the on-demand static analyzer if

no match was found in the cache. This limits the amount of overhead caused by

i
i

i
i

i
i

i
i

18 CHAPTER 2. PATHARMOR

traversing the CFG.

In the event that on-demand static analysis returns a negative result (no valid

path was found in the CFG), the module stops the program and reports that an

attack was detected. With the LBR data still in place, this can also help pinpoint

the exact location of the attack.

Branch recording In addition to path veri�cation, the kernel module provides

a Branch Recording core that implements support for tracking branches on a

per process-thread basis. In addition, it exposes an interface to the instrumented

libraries that is used to disable branch recording during library execution. It can

do this either using the LBR (the current default) or Intel’s Branch Trace Storage

(BTS) feature. Although prior work has shown that BTS imposes a signi�cant

performance slowdown (typically in the order of 20-40x [127]), its ‘unlimited’

nature provides a useful means to measure how many LBR registers are required

to approach optimal security (Section 2.5).

Ideally, we would con�gure the Branch Recording core to collect only indirect

branches (indirect jumps, indirect calls and returns), as only these branches can

be modi�ed by an attacker. However, armed only with information about indi-

rect branches exercised by the program, we cannot eliminate the path explosion

problem. To solve this issue, we instruct the Branch Recording core to keep track

of direct call instructions as well, which can be used by the on-demand static

analysis to eliminate path explosion, rendering Patharmor e�cient in practice.

We elaborate more on this in Section 2.3.2.

To disable branch recording during library execution, we expose two ioctl()

requests to libraries: LIB_ENTER and LIB_EXIT. The dynamic instrumentation

component detailed in Section 2.3.3 inserts these requests for each used library

function by instrumenting their entry and exit points. We discuss related imple-

mentation challenges such as how to enable branch recording again for callbacks,

in depth in Section 2.4. Note that attackers cannot abuse ioctl requests to dis-

able Patharmor, as discussed in Section 2.6.3.

2.3.2 Path Analyzer

The role of the path analyzer is to verify (on the static CFG) at runtime if a par-

ticular path observed at an endpoint is valid. It consults the CFG of the binary

and searches it for the path. We now discuss the three main steps of this analysis:

CFG generation, a reduction of the CFG to eliminate the path explosion problem,

and path validation.

i
i

i
i

i
i

i
i

2.3. PathArmor

PA
TH

A
R

M
O

R

19

CFG generation To validate a path, Patharmor requires an accurate CFG of

the protected binary. To obtain a CFG, we use existing binary analysis frame-

works to disassemble and analyze binaries, as detailed in Section 2.4. Previous

work has shown that the results are accurate enough in practice [162, 156]. To

err on the safe side, Patharmor tolerates potential errors by overestimating the

CFG when necessary. In the worst case, this may cause Patharmor to accept

invalid paths, but it will never reject legitimate ones.

In addition, Patharmor implements indirect edge resolution policies to aug-

ment a CFG walk with indirect edges in a context-sensitive manner. If these

policies fail, we resort to a �ne-grained context-insensitive policy instead [154,

157].

For backward edges (i.e., returns), our policies implement a fully context-

sensitive resolution strategy, to which we refer as call/return matching. This

strategy emulates a runtime call stack by tracking call and return edges as these

are encountered.

For forward edges (i.e., indirect calls), our current prototype supports a sim-

ple context-sensitive strategy which resolves code pointers propagated across

caller-callee pairs with no contrived data �ow. This policy lets us unambigu-

ously resolve indirect call sites, at which call targets are loaded as constants and

passed as a callback argument. However, our path abstraction, in principle, en-

ables much more complex context-sensitive extensions. We evaluate the addi-

tional security provided by forward-edge context-sensitivity in Section 2.5. In

cases where our current policy is unable to trace a code pointer (e.g., in case of a

long-lived code pointer stored on the heap), Patharmor resorts to a CCFI policy

which matches all indirect call sites with all the functions having their address

taken. Indirect jumps, in turn, are conservatively resolved by the underlying

binary analysis framework.

We also implement a strategy to augment the precision of indirect jumps

found in PLT entries. The CFG is updated with data received from the instru-

mentation component, enabling unambiguous target resolution. We discuss this

resolution in more detail in Section 2.3.3.

Addressing path explosion As discussed in Section 2.2, static analysis of large

CFGs may lead to a path explosion problem, where the number of paths to ex-

plore increases exponentially with the exploration depth. Patharmor takes two

measures to address the problem and perform e�cient path veri�cation.

First, as a preprocessing round, Patharmor performs a CFG reduction step

that signi�cantly prunes the CFG, and preserves reachability relations with re-

i
i

i
i

i
i

i
i

20 CHAPTER 2. PATHARMOR

spect to indirect edges and interprocedural direct edges. This step �nds all pos-

sible paths of direct edges between entry and exit points of each function, and

then collapses these paths down to a single edge between each entry point and

the exit points reachable from it. This makes the subsequent search much faster,

as needless (re-)explorations of direct edges can be avoided (e.g., loops).

Second, call/return matching (discussed in Section 2.3.2) allows us to recog-

nize and discard impossible paths, such as paths that call a function from one call

site, and subsequently return to another call site. Without call/return matching,

the path search would have no way of identifying such mismatches.

Path verification The path analyzer is given a path that must be veri�ed. The

path is an LBR state containing direct and indirect calls, indirect jumps, and re-

turns. To verify whether it is valid, the analyzer performs a Depth-First Search

(DFS) on the CFG to �nd a path that contains the provided edges in the same or-

der as they were recorded by the LBR. A recorded path is thus considered valid

i�: (1) all edges in the LBR state exist within the CFG, and (2) these edges can be

linked together via a valid path of direct edges within the CFG. To ensure that

the search terminates quickly if a path does not exist (e.g., the LBR state is ma-

licious), the DFS does not follow indirect edges or direct call edges. Following

such edges would not make sense, because by de�nition, such edges would be in

the LBR state if they occurred on the path under analysis.

Note that in the presence of (1) direct call recording and (2) the CFG reduction,

the DFS cannot get stuck on cycles within the CFG. Indeed, it �rst consults the

LBR for the oldest recorded branch, from a basic block A to a basic block B, and

then loops over all possible outgoing edges of B to see which one to follow. Due

to the CFG reduction, direct jump edges are collapsed, so the outgoing edges of B

are all either indirect edges or direct call edges. For each edge the DFS examines,

it checks whether this edge is the next recorded branch. If this does not hold, it

tries the next edge, until it �nds one that matches the following LBR state. From

here, it restarts analysis, starting from this new edge. This process continues

until the last edge (the most recently recorded branch) is found.

2.3.3 Dynamic Instrumentation

The instrumentation component consists of a library instrumentation (in the

form of a special loader), and dynamic binary instrumentation module. Its main

objectives are (1) collecting address o�sets (for libraries and the target program)

and passing these to the static analysis component, (2) instrumenting libraries so

that they disable LBR tracking before their execution starts and re-enable it again

i
i

i
i

i
i

i
i

2.3. PathArmor

PA
TH

A
R

M
O

R

21

once �nished, and (3) starting the actual target process. In addition, the instru-

mentation component opens a communication channel with the kernel module

that the inserted instrumentation snippets use to communicate with the Branch

Recording core. We now discuss our instrumentation modules in more detail.

Loader The loader is responsible for setting up the Patharmor environment

before starting the protected binary. It is implemented as a pre-loaded shared

library using LD_PRELOAD and instruments the target binary’s main() function.

This hook is then used to open an ioctl() interface with the LBR API of the

kernel module, which in turn is used by the inserted code snippets to notify the

kernel module of speci�c events (e.g., LIB_ENTER).

In addition, the loader collects the program’s PLT and GOT entries as well as

the base addresses of the di�erent libraries that are in place. This information

is then passed via the kernel module to the on-demand static analyzer where

it is used to distinguish calls to library functions from branches within the pro-

gram’s main address space. For this to work, the target program is started with

LD_BIND_NOW=1, which causes the dynamic linker to resolve all symbols at the

program startup instead of deferring function call resolution to the point when

they are �rst referenced.

Rewriter In its default con�guration, Patharmor terminates all sensitive paths

at library boundaries. For this purpose, our dynamic instrumentation module

uses Dyninst to rewrite all library functions that are used by the program (i.e.,

those that can be found in the process’ PLT table, as well as those dynamically

loaded using dlsym()). The inserted code snippets ensure that library functions

�rst send an disable request to the LBR API in the kernel module before execut-

ing, and �nish with an LBR enable request before returning to the program.

Disabling the LBR of course comes at a price: a library function may at some

point invoke a callback handler which may or may not reside in the target’s ad-

dress space. If we do not re-enable the LBR again on callbacks, a bug in the

callback handler could still be exploited by an attacker as we lose vital informa-

tion on executed paths. To overcome this problem, we apply another round of

dynamic instrumentation, only this time to make sure that whenever such a call-

back is invoked, LBR tracking is enabled again. We discuss this process in more

detail in Section 2.3.3.

The dynamic instrumentation module of the initialization component per-

forms necessary rewriting tasks at load time (when dynamically linked libraries

are available) and at runtime (every time a new shared library is dynamically

i
i

i
i

i
i

i
i

22 CHAPTER 2. PATHARMOR

loaded into memory). Note that we only need to instrument shared libraries. No

instrumentation is required in the protected applications, leaving the original

target’s code space intact.

Callbacks As mentioned above, a second dynamic instrumentation round is

required in order to enable branch recording again when a library function in-

vokes a callback that lies in the program’s binary (e.g., qsort()). Instrumenting

callback sites is done by looping over all shared library functions and searching

for indirect call instructions. For each indirect call instruction, a short snippet

of code is inserted that (1) tests if the target of the indirect call lies in the target

program’s address space, and (2) if this is the case, wraps the call instruction in

two ioctl() system calls that notify the kernel module that a callback function

is entered or exited: (CALLBACK_ENTER and CALLBACK_EXIT, respectively).

Whenever the kernel module receives the CALLBACK_ENTER request, it pushes

the current LBR state (i.e., the content of the LBR registers as seen before the

library function that performs the callback) to an internal stack of LBR contexts.

When the callback exits (CALLBACK_EXIT), the kernel module pops the top of

this LBR stack back into the actual registers. To support code that forks within a

callback, the kernel module copies the stack of LBR contexts to the newly created

process, so that parent and child both safely return to their callback handlers

without inconsistent branch records.

Observe that signals are essentially a specialized form of callbacks and can be

processed in a similar manner. The only di�erence is that instead of instrument-

ing code, we install a hook on the kernel’s signal delivery function. This hook is

executed before control is returned to the signal handler, allowing us to save the

current LBR context so that it can be restored upon the sigreturn system call.

This approach of switching LBR contexts at the moment callback handlers are

invoked raises a speci�c security threat where an attacker could install a di�er-

ent handler than normally enforced by the CFG. Consider the example where an

attacker exploits a memory corruption bug to install a callback handler that �ts

his needs. Without applying any additional security measurements, this opera-

tion may go unnoticed (control-�ow diversion happens indirectly in the kernel

or in the libraries). To overcome this situation, Patharmor (i) considers signal

handler registration and LBR management operations (i.e., push context, pop

context) as sensitive operations and (ii) always copies the last branch entry dur-

ing LBR context switching as the �rst branch entry for the new context, allowing

on-demand static analysis to apply our indirect edge resolution policies on the

library-originated indirect call edge before allowing the callback. A symmetric

i
i

i
i

i
i

i
i

2.4. IMPLEMENTATION

PA
TH

A
R

M
O

R

23

approach is used to avoid false positives for library-originated function pointers

(e.g., returned by dlsym()) which are used for indirect call invocations by the

program. Our static analyzer resolves the “special” library target in a dedicated

way without resorting to more sophisticated modular CFI policies [97].

Special constructs Similarly to our callback support, Patharmor supports the

longjmp() construct by implementing a special handler for this in the kernel

module: for each setjmp(), the kernel stores the existing LBR contents along

with the provided env argument. When a longjmp() is executed, our module

veri�es the LBR contents, �ushes them and restores the LBR with the appropriate

state as stored earlier (matching env). Similarly to callbacks, we rely on our

dynamic instrumentation component to insert dedicated SETJMP and LONGJMP

ioctl() requests for each construct.

2.4 Implementation

We implemented Patharmor on Linux v3.13 for x86_64 with support for multi-

process and multi-threaded applications. Our kernel module is implemented as

a standard loadable module for the Linux kernel in 1,752 LOC. The on-demand

static analysis component is implemented as a plugin for the Dyninst binary

analysis and rewriting framework [11] in 6,741 LOC overall. The library instru-

mentation is implemented as another Dyninst plugin in 1,625 LOC.

To intercept sensitive system calls, we install an alternative syscall handler

by overwriting the MSR_LSTAR register. Patharmor will forward most system

calls directly to their vanilla implementation, imposing little to zero extra over-

head. However, we consider a total of seven system call families as dangerous,

and start veri�cation whenever these are encountered: mprotect and the mmap

family (which can be used to disable DEP/W⊕X), and the exec family (which can

be used to start a malicious command) are obvious choices and have been con-

sidered in prior work in the area [30]. To address the challenges related to signal

handling as detailed in Section 2.3.3, Patharmor also intercepts the sigaction

and sigreturn system calls. Patharmor can also be con�gured to protect I/O

system calls, to prevent attacks like data leaks and script injection in (for instance)

web servers.

Since Linux does not currently support per-task LBR context management,

we implemented it to avoid pollution from other processes. We used the standard

preemption noti�er functionality (preempt_notifier_register) provided by

the Linux kernel to install hooks on context-switches. During a context-switch-

i
i

i
i

i
i

i
i

24 CHAPTER 2. PATHARMOR

out (sched_out), Patharmor stores the LBR state of the current process into

an LBR process table, to restore it later when the thread is scheduled in again

(sched_in). This approach allows Patharmor to support binaries that make use

of multi-threading.

Our current Patharmor prototype is based on the Dyninst binary rewriting

framework, and as a consequence does not support C++ exceptions. This limi-

tation is not fundamental to Patharmor, and can be addressed in future work

with additional engineering e�ort.

2.5 Evaluation

We evaluated Patharmor on a workstation equipped with an Intel i5-2400 CPU

3.10 GHz and 8 GB of RAM. We ran all our tests on an Ubuntu 14.04 installa-

tion running Linux kernel 3.13 (x86_64). To measure the performance impact

of Patharmor for the worst case, we default Patharmor to run in non-library

operation mode, but we evaluate the e�ects of enabling in-library tracking in

Section 2.5.4.

We focus our evaluation on popular Linux server applications, given that (i)

they are widely known and adopted in the research community for evaluation

purposes, (ii) they are popular exploitation targets for both local and remote at-

tacks, and (iii) they naturally contain a relevant number of security-sensitive

functions that can bene�t from the protection guarantees provided by Pathar-

mor. Speci�cally, we evaluated our prototype with three popular FTP servers

(namely, vs�pd v1.1.0, ProFTPD v1.3.3, and Pure-FTPd v1.0.36), two popular web

servers (nginx v0.8.54 and ligh�pd v1.4.28), a popular SSH server (the OpenSSH
Daemon v3.5), and a popular email server (Exim v4.69). We also evaluated the

performance of Patharmor on SPEC CPU2006.

To benchmark our web servers, we used the Apache benchmark [239] con-

�gured to issue 25,000 requests with 10 concurrent connections and 10 requests

per connection. To benchmark our FTP servers, we relied on the pyftpbench

benchmark [242] con�gured to open 100 connections and request 100 1 KB-sized

�les per connection. To benchmark OpenSSH and Exim, �nally, we used the

OpenSSH test suite [243] and a homegrown script which repeatedly launches

the sendemail program [245], respectively. We con�gured all our applications

and benchmarks with their default settings. We ran all our experiments 11 times

(checking that the CPUs were fully loaded throughout our tests) and report the

median with marginal variations observed across runs.

Our evaluation answers 4 key questions: (1) Security: Is Patharmor e�ective

i
i

i
i

i
i

i
i

2.5. EVALUATION

PA
TH

A
R

M
O

R

25

in improving the security of existing CFI techniques against control-�ow diver-

sion attacks? (2) Analysis time: Does Patharmor’s static analysis complete in

reasonable time? (3) runtime performance: Does Patharmor yield low runtime

overhead while protecting a relevant set of sensitive functions? (4) Memory us-
age: How much memory does Patharmor require?

2.5.1 Security

To evaluate the security guarantees o�ered by Patharmor and, in particular, the

improvements o�ered by CCFI over existing CCFI techniques, we measured the

strength of the CFI invariants extracted by our static analysis and enforced by

Patharmor’s runtime veri�cation. For this purpose, we instructed our static

analyzer to generate CFI statistics during the execution of our benchmarks and

compare the results against fully context-insensitive CFI policies. Note that these

statistics (and metrics) are intended only to provide a clear picture of the strength

of Patharmor’s invariants compared to other CFI solutions. As such, the fol-

lowing discussion focuses on a relative comparison across CFI implementations,

rather than on absolute numbers.

Table 2.1a presents control-�ow statistics aggregated across our applications.

The �rst, second, and third group of columns provide an overview of all the appli-

cations analyzed, their sensitive functions, and their interprocedural CFG (or sim-

ply CFG) information generated by our analyzer with fully context-insensitive

indirect edge resolution policies. As the table shows, the number of sensitive

functions as well as the number of nodes and edges in the CFG (|V | and |E|,
respectively) varies greatly across applications, re�ecting their di�erent internal

structure.

The fourth group of columns, in turn, reports the fraction of indirect back-

ward edges (IB), indirect forward edges (IF), and direct forward edges (DF) in the

LBR averaged across all the sensitive function calls during the execution of our

benchmarks. As expected, the overall distribution is relatively stable across appli-

cations, with backward edges largely dominating (indirect) forward edges (37%

vs. 25% geometric mean). Encouragingly, direct forward edges—which, how-

ever necessary to scalably enforce our CCFI policies, also naturally decrease the

number of LBR entries subject to CFI enforcement—have a signi�cant but non-

dominant impact in practice (37% geometric mean).

Table 2.1b presents averaged gadget statistics for coarse-grained CCFI, �ne-

grained CCFI and CCFI policies (respectively). In detail, the |G| column reports

the average number of targets (and thus gadgets) allowed by the given CFI pol-

icy for each indirect edge observed in the LBR. The min[GLen] column, in turn,

i
i

i
i

i
i

i
i

26 CHAPTER 2. PATHARMOR

Table 2.1. Runtime CFI statistics for the evaluated server programs. Table 2.1a lists control-
flow properties for each evaluated server program. Table 2.1b compares permi�ed
control flows in coarse-grained, fine-grained, and context-sensitive CFI.

(a) Control-flow properties. The Functions column reports the sensitive endpoints ob-
served at runtime: sa=sigaction, sg=signal, ra=raise, ki=kill, mm=mmap, m4=mmap64,
mp=mprotect, el=execl, ev=execv, and ee=execve. The CFG group reports the number
of nodes and edges in the CFG. The LBR group reports the average number of indirect
backward edges, indirect forward edges, and direct forward edges in the LBR, just before
executing a sensitive endpoint.

CFG LBR (Avg.)

Server Functions |V | |E| |E
IB
|

|E|
|E

IF
|

|E|
|E

DF
|

|E|

exim sa,sg,ki,ev,ee 37,906 167,867 0.34 0.28 0.38
ligh�pd sa,sg,ki,m4,el 7,380 38,006 0.38 0.22 0.40
nginx sa,ra,ki,m4,ee 26,029 432,829 0.45 0.20 0.35
openssh sa,sg,mm,el,ev,ee 14,749 63,644 0.38 0.26 0.36
pro�pd sa,sg,ki,mm 29,682 210,489 0.38 0.27 0.35
pure-�pd sa, 5,702 19,910 0.32 0.33 0.35
vs�pd sa,mm,mp 4,052 9,269 0.33 0.23 0.44

(b) Number of gadgets and minimum gadget length for coarse-grained CCFI, fine-grained
CCFI, and CCFI, averaged for each indirect edge observed in the LBR, just before executing
a sensitive endpoint.

CCFIcg (Avg.) CCFIfg (Avg.) CCFI (Avg.)

Server |G| min[GLen] |G| min[GLen] |G| min[GLen]

exim 2,589 2.2 25 4.4 11 11.1
ligh�pd 561 2.0 3 4.8 1 5.5
nginx 1,482 2.8 23 9.3 15 9.9
openssh 1,725 2.1 16 3.9 4 7.2
pro�pd 3,250 2.2 20 4.0 6 7.5
pure-�pd 404 2.2 5 4.5 2 5.1
vs�pd 543 3.5 3 8.0 1 13.1

provides more qualitative information on the resulting CFI-allowed gadgets, by

averaging the minimum allowed gadget length for each edge observed in the LBR.

As shown in the table, CCFI yields a signi�cantly lower average number of gad-

gets compared to coarse-grained and �ne-grained CCFI (respectively, −99.7%

and −61.6% geometric mean). Figure 2.4 also details the CDF of the number

of allowed targets for the two applications with most sensitive calls (Exim and

ProFTPD). We observed similar trends for the other applications. The CDF con-

�rms that CCFI allows very few targets for the vast majority of control �ow trans-

i
i

i
i

i
i

i
i

2.5. EVALUATION

PA
TH

A
R

M
O

R

27

0.70

0.75

0.80

0.85

0.90

0.95

1.00

20 40 60 80 100 120 140 160 180 200

Fr
ac

ti
on

of
co

nt
ro

lt
ra

ns
fe

rs

Number of allowed targets

exim – CCFI fg

exim – CCFI cg

exim – CCFI
pro�pd – CCFI fg

pro�pd – CCFI cg

pro�pd – CCFI

Figure 2.4. Distribution of the number of allowed targets for indirect branches in the LBR
when applying coarse-grained CCFI, fine-grained CCFI, and CCFI on Exim and
ProFTPD—two applications with a high number of sensitive endpoints. The plot
shows what fraction of control transfers may target how many gadgets. For
example, when applying CCFI on ProFTPD, 98% of the control transfers may
target less than 40 gadgets, while coarse-grained CCFI only enforces that 72% of
the indirect branches have less than 40 possible targets.

fers — for instance, on Exim, 98% have less than 13 targets compared to around

86% for �ne-grained CCFI and 72% for coarse-grained CCFI (the common policy

for binary-level CFI solutions [154, 157]). This demonstrates the e�ectiveness of

our context-sensitive CFI policies, which can drastically restrict the number of

legal targets for most LBR entries.

Our improvements are naturally also re�ected in the overall complexity of the

gadgets left to the attacker, with the average minimum allowed gadget length

(min[GLen]) substantially increasing compared to the coarse-grained and �ne-

grained versions of CCFI (respectively, +245% and +53% geometric mean). In

general, shorter gadgets are easier to �t together and are more preferred than

longer gadgets for building a ROP chain. By reducing the possible indirect edge

targets, the attacker’s gadget arsenal gets diminished and the bar for exploita-

tion increased. As an example, Table 2.1 shows that the reduction in the average

number of indirect edge targets from 17 to 2.3 for Exim resulted in an increase

of the average number of instructions in the shortest allowed gadgets from 4.4

to 11. With CCFI, a deeper gadget analysis also revealed a signi�cant increase

in the average number of register accesses in the shortest allowed gadgets com-

i
i

i
i

i
i

i
i

28 CHAPTER 2. PATHARMOR

0.70

0.75

0.80

0.85

0.90

0.95

1.00

20 40 60 80 100 120 140 160 180 200

Fr
ac

ti
on

of
si

ng
le

-t
ar

ge
t

ba
ck

ed
ge

s

Synthetic LBR size

exim - CCFI
pro�pd - CCFI

Figure 2.5. Fraction of single-target backedges for CCFI for Exim and ProFTPD—two applica-
tions with a high number of sensitive endpoints—when simulating an increasingly
large LBR. The plot shows that roughly 90% of the return instructions would have
a single valid destination if the LBR can hold 64 branches.

pared to the coarse-grained and �ne-grained versions of CCFI. The geometric

means of these accesses for the coarse-grained CCFI, the �ne-grained CCFI and

CCFI are respectively 1.3, 4.5 and 7.7. This further con�rms the increased gadget

complexity when using CCFI policies.

To evaluate the e�ectiveness of the particular CCFI techniques implemented

in Patharmor, we also examined the impact of context sensitivity on both edges

in more detail. For this purpose, we �rst compared our (static) backward-edge

CCFI policy with that enforced by a (dynamic) shadow stack, the only known

(runtime) solution which mimics context-sensitive control-�ow policies—albeit

only on the backward edge and using tamper-prone and more heavyweight in-

strumentation at the binary level. For a fair comparison, we focused our mea-

surements on the fraction of backward edges observed in the LBR which are

allowed only one target (in a fully context-sensitive fashion) by our CCFI tech-

niques and also relied on Intel’s BTS feature to simulate an LBR of arbitrary size—

overcoming the restrictions imposed by commodity hardware.

Figure 2.5 presents our results for increasing LBR sizes and the two applica-

tions with most sensitive calls (Exim and ProFTPD). We observed similar trends

for the other applications. On commodity hardware (16 LBR entries), Pathar-

mor can enforce a single target for nearly 75% of the backward edges observed in

the LBR. In the remaining cases, the limited LBR size causes Patharmor to lose

i
i

i
i

i
i

i
i

2.5. EVALUATION

PA
TH

A
R

M
O

R

29

Table 2.2. Indirect call reduction and JIT analysis statistics. The Target reduction group
shows the fraction of legal indirect targets for (ideal binary-level) context-sensitive
vs. context-insensitive forward-edge CFI. The JIT group shows how much time was
spent running static analysis at runtime, while Cache presents how many path
cache hits and misses occurred during the execution of our benchmarks.

Target reduction JIT (ms) Cache

Server Indirect calls targetscs
targetsci

Total Average #Misses #Hits

exim 99 0.89 100 3 40 1,871
ligh�pd 66 0.84 28 2 13 2
nginx 271 0.82 24 5 5 10
openssh 131 0.82 52 2 22 49
pro�pd 120 0.99 140 4 39 2,495
pure-�pd 11 1.00 56 2 27 1,915
vs�pd 6 0.38 24 3 9 2,283

program context and resort to CCFI policies. While the current LBR size limit

prevents Patharmor from fully reaching the ideal shadow stack performance

(100%), these results are still encouraging given the small default LBR size. In

addition, Figure 2.5 shows that future hardware extensions can help �ll the gap,

e.g., enforcing a single target in 90% of cases with 70 LBR entries.

To evaluate the e�ectiveness of our forward-edge CCFI policy, we examined

the reduction in the number of allowed indirect call targets caused by context sen-

sitivity. Due to the very limited number of indirect call entries in the LBR for our

test programs (which rarely use indirect calls close to sensitive function points),

however, we did not observe any signi�cant reduction in our experiments. To

generalize our results and eliminate any application-speci�c bias, we applied

our policy to all the code paths. This still resulted in a relatively small reduc-

tion overall (less than 5% in most cases). This is, however, expected, given that

our current binary-level forward-edge CCFI policy is very simple—only propa-

gating function pointers passed in call arguments in a straightforward way—and

only intended to demonstrate the practicality of implementing arbitrary forward-

edge CCFI policies in Patharmor. To examine the potential for more sophisti-

cated forward-edge CCFI policies, we approximated an ideal binary-level context-

sensitive forward-edge analysis using higher-level language semantics—i.e, im-

plemented on top of LLVM 2.9 Data Structure Analysis (DSA) [84].

The Target reduction group in Table 2.2 shows the e�ect of the resulting

forward-edge CCFI policy on our set of server programs. In most cases, our

context-sensitivity policy causes a reduction of around 10% to 20% for the av-

erage number of indirect call targets. The reduction varies depending on the

i
i

i
i

i
i

i
i

30 CHAPTER 2. PATHARMOR

context-sensitive function pointer resolution accuracy. For vs�pd, we obtain a

reduction of 62%, while numbers decrease for applications with more complex

pointer resolutions. We believe these results are encouraging, stimulating re-

search on more sophisticated forward-edge CCFI policies—which Patharmor

can serve as a basis for. Moreover, DSA’s �ow-insensitive and uni�cation-based

design aggressively merges data-�ow information, improving speed but also re-

sulting in overly conservative results [84]. In addition, due to implementation

limitations, DSA is known to produce even more conservative, and thus pes-

simistic, results on modern LLVM releases [230]. Thus, an updated version of

DSA (or a more precise, but also less scalable analysis) would already likely yield

substantially improved forward-edge results.

Overall, our analysis shows that CCFI is e�ective in generating robust CFI

invariants to defend against even sophisticated control-�ow diversion attacks.

While attacks are still theoretically possible—and they might be even for an ideal

CCFI solution—the adoption of context sensitivity sensibly limits the quantity

and quality of gadgets available to the attacker. This is in stark contrast, for

example, with unrestrictedly allowing simple call-site gadgets, which have been

used to mount attacks against prior CCFI techniques [57].

2.5.2 Analysis Time

Patharmor’s on-demand path analysis translates to increased application run-

time. To evaluate the impact, we measured the time spent in our analyzer—using

our CCFI policies—during the execution of our benchmarks. The right-hand

side of Table 2.2 presents our results: it details the total and average analysis

time measured across all the paths analyzed. As shown in the table, the average

time spent in our analyzer to inspect each path—with little time variations across

paths—is relatively low (ranging from 2 ms to 5 ms). This demonstrates that our

optimizations—pre-normalizing the CFG and recording direct forward edges in

the LBR—are e�ective in implementing a scalable context-sensitive path analysis

even for programs with a large and complex CFG. In addition, the total time spent

in our analyzer is marginal compared to the total benchmark run time (24 ms to

140 ms vs. several seconds). This shows the e�ectiveness of our path cache which,

as also reported in Table 2.2, was consulted thousands of times with only dozens

of misses for most applications. We elaborate on the end-to-end impact of our

on-demand path analysis strategy on runtime performance in the next section.

i
i

i
i

i
i

i
i

2.5. EVALUATION

PA
TH

A
R

M
O

R

31

Table 2.3. Runtime performance results and statistics collected at runtime for our set of server
programs. The Normalized runtime group shows the overhead for a number
of incremental configurations: (1) save and restore LBR registers during context-
switches, (2) added library instrumentation to disable LBR tracking when executing
library code, (3) added callback instrumentation to temporarily re-enable LBR
tracking when library code calls back to the program, and (4) added path verification.
The Event statistics group show details on the number observed library calls,
system calls and signals at runtime.

Normalized runtime Event statistics

Server LBR only +LInstr +CBInstr +PathVer #LCalls #SCalls #Signals

exim 1.025 1.019 1.036 1.079 67,849 4,149 50
ligh�pd 1.097 1.236 1.226 1.275 1,209,081 200,564 0
nginx 1.053 1.178 1.168 1.174 1,500,021 200,002 0
openssh 1.003 1.003 1.031 1.020 24,313 720 8
pro�pd 1.000 1.000 1.000 1.000 171,440 48,562 6
pure-�pd 1.003 1.053 1.031 1.074 115,897 57,843 64
vs�pd 1.000 1.000 1.000 1.000 35,883 42,446 208

2.5.3 Runtime Performance

To evaluate the impact of Patharmor’s instrumentation and path veri�cation

strategy on runtime performance, we measured the time to complete the execu-

tion of our benchmarks and compared against the baseline. Table 2.3 presents

our results. The Normalized runtime group details the runtime overhead for a

number of con�gurations. First, LBR only refers to con�guring our kernel mod-

ule to solely save and restore LBR contents during context switches. As shown in

the table, this introduces marginal performance impact (0% to 10% in the worst

case). The overhead is somewhat more pronounced in the +LInstr and +CBIn-
str con�gurations (6.6% and 6.7%, geometric mean), which additively account for

our library entry point and callback instrumentation (respectively), but omit the

path veri�cation step in our kernel module. The +PathVer con�guration, �nally,

refers to the default Patharmor setup, enabling full instrumentation and path

veri�cation using our on-demand static analyzer. As shown in the table, our

cache-aware path analysis has relatively little impact on runtime performance

(+1.7%, geometric mean), resulting in an average runtime overhead of 8.5% (geo-

metric mean).

To shed some light on the key factors contributing to the performance over-

head, we also instructed Patharmor to report statistics on the runtime events of

interest, as shown in the third group of columns in Table 2.3. Our results con�rm

that library calls (#LCalls) are the most prevalent contributing factors in the mean

i
i

i
i

i
i

i
i

32 CHAPTER 2. PATHARMOR

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

400.perlbench

401.bzip2

403.gcc

429.mcf

433.milc

445.gobmk

456.hmmer

458.sjeng

462.libquantum

464.h264ref

470.lbm

482.sphinx3

geomean

N
or

m
al

iz
ed

ru
nt

im
e

LBR only
+LInstr

+CBInstr
+JITVal

Figure 2.6. Normalized runtime for four incremental Patharmor configurations (only LBR
tracking, added library instrumentation, added callback instrumentation, and full
protection) for all C programs in SPEC CPU2006.

case, also inducing the worst-case performance impact on ligh�pd (27.3%). More

aggressively instrumented operations like callback invocations (marginal, not re-

ported in table), sensitive function calls (#SCalls) and signals (#Signals) have a

less prominent impact and can thus be better amortized over the execution.

To obtain standard and comparable performance results across Patharmor’s

con�gurations, we also measured the time to complete all the C programs in

SPEC CPU2006 and compared against the baseline. Figure 2.6 presents our �nd-

ings. Our results con�rm the general behavior observed for our server appli-

cations, but the performance overhead is generally much lower (3% in Pathar-

mor’s default con�guration, geometric mean). This result stems from the lower

number of library and system calls issued by SPEC programs, as expected for

standard CPU-intensive (as opposed to syscall-intensive) benchmarks.

Overall, Patharmor imposes a relatively low runtime performance impact on

all the test programs considered. This con�rms that Patharmor’s lightweight

instrumentation and cache-aware path analysis are successful in producing a

runtime overhead comparable to the most e�cient (source-level and forward-

edge only) CCFI techniques [130], while enforcing much more advanced context-

sensitive CFI policies on both the forward and backward edge and operating

entirely at the binary level.

i
i

i
i

i
i

i
i

2.5. EVALUATION

PA
TH

A
R

M
O

R

33

Table 2.4. LBR pollution caused by library calls in SPEC CPU2006. #Library calls lists the
total number of library calls that were executed at runtime, #Polluted entries
shows how many LBR entries got polluted by library code in total, and Fraction
shows how much history is lost per library call on average.

Benchmark #Library calls #Polluted entries Fraction

400.perlbench 60,495,412 253,246,721 26.16
401.bzip2 449 1,284 17.87
403.gcc 3,373,862 13,086,146 24.24
429.mcf 470,597 5,705,524 75.78
433.milc 28,807,387 65,657,612 14.24
445.gobmk 299,877 1,004,581 20.94
456.hmmer 4,098,071 18,395,790 28.06
458.sjeng 11,602 176,683 95.18
462.libquantum 52,609,059 105,222,996 12.50
464.h264ref 2,449,569 12,515,117 31.93
470.lbm 2,626,460 5,263,308 12.52
482.sphinx3 48,625,654 187,711,907 24.13

2.5.4 LBR Pollution

As discussed in Section 2.3, Patharmor’s design supports two modes of oper-

ation: (1) stop tracking branches at the library level, or (2) continue tracking

within libraries. The current implementation of Patharmor uses the �rst mode

by default, e�ectively increasing the control �ow context of the protected binary

during path veri�cation. To also protect against control �ow diversion triggered

within library code, Patharmor can be con�gured with the second mode of op-

eration. When running in this mode, branch tracking is never disabled at the

cost of (partially) “polluting” the LBR from (self-contained) library code.

To evaluate the LBR pollution cost of running in full-library mode, we con-

�gured Patharmor to compare LBR contents right before and right after each

library call and reran the SPEC CPU2006 benchmark. Table 2.4 shows the results.

The average pollution rate of 25.68% overall (geometric mean) is likely acceptable

in environments where untrusted, potentially vulnerable libraries are in place.

Tracking inside libraries leads to better performance, as this removes the

jump to kernel during program-library transitions. Thus, as mentioned earlier,

the results provided in this section show worst-case performance. As discussed

above, the trade-o� of in-library tracking is increased LBR pollution, which, how-

ever, can also be mitigated with complementary techniques, such as inlining li-

brary code or using hardware that provides a larger branch record.

i
i

i
i

i
i

i
i

34 CHAPTER 2. PATHARMOR

2.5.5 Memory Usage

Patharmor instrumentation increases memory usage at runtime. To evaluate

this impact, we measured the physical memory used by instrumented applica-

tions compared to the baseline. Deploying our kernel module alone has a con-

stant and marginal memory usage impact (+1 MB). Our static analyzer, in turn,

yields a memory usage impact proportional to the size of the CFGs under active

analysis, resulting in an increase of +18-74 MB across all our applications.

More important is to assess the memory usage impact of our path caching

strategy, given that caching static analysis results is important to minimize the

performance impact on instrumented applications. Encouragingly, our measure-

ments indicate a very small memory usage impact induced by our in-kernel path

cache, resulting in a worst-case increase of only 2 KB across all our applications

during the execution of our benchmarks. This suggests that our path caching

strategy is practical even for applications which periodically issue several di�er-

ent sensitive function calls, and even provides evidence that deploying a system-

wide path cache that persists across application restarts (thus eliminating cache

warmup-phase penalties for applications with strong real-time guarantees) may

be a realistic option.

2.6 Discussion

This chapter outlined and evaluated the design decisions made in Patharmor.

We now discuss evasion techniques an attacker may employ to bypass Pathar-

mor, analyzing their impact and the limitations of our current solution.

2.6.1 History-Flushing A�acks

An attacker may attempt to mount a history-�ushing attack to clear any traces

of a ROP chain from the LBR. History-�ushing attacks previously described in

the literature �rst execute 16 innocuous NOP-like gadgets followed by a long

termination gadget that restores argument registers and ultimately performs a

security-sensitive system call [26]. The long termination gadget bypasses heuris-

tics used in prior LBR-based solutions such as kBouncer [102] and ROPecker [30],

which rely on weak security invariants based on gadget size (which they assume

to be small) and frequency.

Patharmor is not vulnerable to this simple attack, as history �ushing in

Patharmor is equivalent to the attacker crafting a valid CCFI-permitted path

of 16 NOP-like gadgets (using direct calls or indirect branches). This is much

i
i

i
i

i
i

i
i

2.6. DISCUSSION

PA
TH

A
R

M
O

R

35

more di�cult than chaining arbitrary and CFG-agnostic gadgets. In other words,

the notion of a path in Patharmor is stronger than that of regular (context-

insensitive) CFI and much stronger than that of kBouncer and ROPecker. Hence,

while history-�ushing attacks remain of concern, Patharmor’s stronger invari-

ants signi�cantly raise the bar for the attacker. For example, we have shown in

Section 2.5.1 that it is generally much harder to maintain register states over that

many branches.

A related attack is to force context switches to clear the LBR and indirectly

mount a history-�ushing attack. This attack is also ine�ective against Pathar-

mor, given that, as outlined in Section 2.4, Patharmor stores and restores LBR

states during context switches on a per-thread basis.

2.6.2 Non-Control Data A�acks

An attacker may attempt to mount a non-control data attack to indirectly in�u-

ence the execution of existing security-sensitive functions in the program with-

out directly diverting control �ow. For example, an attacker can exploit an arbi-

trary memory write vulnerability to overwrite sensitive function arguments that

are maintained in a data region. Similarly to all the existing (and even ideal) CFI

solutions, Patharmor cannot protect against these and other data-only attacks.

Unlike existing whole-program CFI solutions, however, Patharmor’s history-

based strategy would also allow an attacker to craft a ROP-based memory write

primitive before jumping to the beginning of a valid execution path leading to a

security-sensitive function. Nevertheless, since ROP is not necessary to perform

an attacker-controlled memory write and arbitrary memory write vulnerabilities

are actually very common, we do not believe this is a limiting factor within our

threat model. We also note that binary-level defenses against non-control data

attacks are explored in orthogonal work [125].

2.6.3 Endpoint-Pruning A�acks

An attacker may attempt to evade detection by avoiding calls to sensitive end-

points recognized by Patharmor. This is because, similarly to prior endpoint-

driven solutions [30, 102], Patharmor enforces security invariants only at pre-

determined sensitive function calls. Assuming Patharmor’s default con�gura-

tion, such endpoint-pruning attacks require the attacker to �nd alternative means

to a�ect the system environment without relying on system calls such as exec,

and mprotect. While this is generally of concern depending on the goals of the

attacker, Patharmor allows users to con�gure the list of sensitive endpoints ac-

i
i

i
i

i
i

i
i

36 CHAPTER 2. PATHARMOR

cording to their needs. For programs in which our default con�guration is not

su�cient to provide the required guarantees, users can custom tune the list of

endpoints and balance security and runtime performance.

Nevertheless, we believe that Patharmor’s default con�guration alone dras-

tically reduces the freedom of an attacker. Although ROP may still be used to

perform arbitrary Turing-complete computations, without the ability to execute

core security-sensitive system calls, the impact on the system remains limited.

2.6.4 Instrumentation-Tampering A�acks

An attacker may attempt to abuse the instrumentation employed by Pathar-

mor’s default mode of operation (which disables branch tracking in library code)

to alter the branch record. Nevertheless, this attack would still fail to circumvent

Patharmor’s detection strategy. Consider the scenario wherein an attacker sets

up a ROP chain that invokes the ioctl system call with a dedicated Patharmor-

speci�c argument to tamper with the branch-tracking instrumentation. Depend-

ing on the request type, this attack will result in two possible outcomes. In the

case of a CALLBACK_EXIT request, Patharmor’s kernel module will immediately

verify the current LBR state (see Section 2.3.3) and detect CCFI invariants viola-

tions caused by the originating ROP-based control �ow. In the case of a LIB_-

ENTER request, in turn, Patharmor’s kernel module will immediately return con-

trol to userland after disabling branch tracking, allowing the attack to resume in

LBR-free execution. As soon as the attacker invokes a security-sensitive func-

tion, however, Patharmor’s kernel module will perform veri�cation as normal.

At that point, the LBR state will still re�ect the branch record generated by the at-

tacker’s original ROP chain (leading to the previously issued ioctl system call),

resulting, again, in Patharmor detecting the attack. Note that an attacker can

also attempt to later re-enable branch tracking via a LIB_EXIT operation, but a

Patharmor-legal path of 16 indirect branches is then required to clear any traces

of the original ROP attack—essentially equivalent to the history-�ushing attacks

discussed earlier.

2.7 Related Work

CFI was originally proposed by Abadi et al. [2]. The original (strict) CFI proposal

incurs high overheads. This has lead to a myriad of proposals for practical CFI

implementations which realize better performance by strategically trading o�

security guarantees. There are two broad branches of CFI implementations: (1)

Control-Flow Graph-based (CFG-based) CFI, and (2) Heuristic-based CFI.

i
i

i
i

i
i

i
i

2.7. RELATED WORK

PA
TH

A
R

M
O

R

37

CFG-based CFI focuses on enforcing properties of the CFG. Compiler-based

approaches inherently require source to resolve (indirect) control transfers that

are considered legitimate [2, 5, 16, 40, 47, 96, 141, 151]. Due to the availability of

source information, these approaches are usually able to derive accurate CFGs.

Binary-based approaches, while potentially less accurate (i.e., based on an over-

approximated CFG), have the advantage of being applicable to legacy programs

where the source code is not available [77, 145, 154, 156, 157]. Recently, modular

CFI approaches have also been proposed. These are a variant of CFG-based ap-

proaches, which resolve part of the CFG at runtime, providing greater �exibility

for dynamically computed targets [97, 98, 105].

In contrast to CFG-based CFI, heuristic-based CFI does not require a CFG to

enforce integrity. Such approaches include kBouncer [102] and ROPecker [30],

which seek to detect anomalous control patterns at sensitive program points.

Such approaches are easy to deploy, but are also relatively easy to circumvent,

due to their heuristics [57].

Prior work explored devastating attacks against both prior CFG-based and

heuristic-based CFI, using combinations of individually legal control transfers [26,

43, 57]. Patharmor enables stronger defenses against such attacks by e�ciently

enabling context-sensitive CFI policies over paths to sensitive functions and dis-

allowing many unnecessary forward and backward edges permitted by prior

context-insensitive CFI policies (e.g., backward edges to arbitrary call-site gad-

gets, a common attack target [57]).

In prior �ne-grained CFI techniques, context-sensitive policies have been ex-

plored only for backward edges and only using shadow stacks [13, 29, 31, 35, 41,

47, 111, 115, 184, 150].

In contrast to the runtime shadow stack approach, Patharmor resolves back-

ward edges using a hardware-supported context-sensitive static analysis over the

interprocedural CFG and caches the results at sensitive points in the program,

yielding improved performance and security against tampering attacks. Static

context-sensitive backward edge resolution strategies have been explored before

for security, but only to improve the accuracy of IDS models based on syscall se-

quences [138]. Patharmor, in contrast, shows that enforcing context-sensitive

CFG-based policies both on the forward and backward edge at a much �ner

level of granularity (i.e., control-�ow transfers for CFI) is a realistic and e�cient

option thanks to emerging hardware features. This result contrasts claims in

prior work, which, while acknowledging their security advantages, generally dis-

missed context-sensitive CFI policies as impractical for real-world adoption [2].

Other approaches rely on hardware-supported branch tracing to improve CFI

i
i

i
i

i
i

i
i

38 CHAPTER 2. PATHARMOR

performance. Similar to Patharmor, kBouncer [102] and ROPecker [30] rely on

Intel’s LBR to e�ciently implement branch tracing, but only to enforce heuris-

tic CFI policies which can be easily circumvented [26]. CFIMon [145] can en-

force hardware-supported CFG-based CFI policies, but relies on the signi�cantly

slower Intel BTS [102] and yields high detection latencies, potentially missing

attacks [30]. Unlike Patharmor, none of these approaches attempt to enforce

context-sensitive policies over hardware-monitored control transfers.

Concurrently with our work, Schuster et. al. have developed the COOP at-

tack [120], and show that CFI solutions that do not precisely consider object-

oriented semantics in C++ programs can generally be bypassed. While our work

mainly focuses on C rather than C++ programs, we believe CCFI can strengthen

forward-edge invariants (subject to the precision of the underlying data-�ow

analysis) in modern vtable protection techniques in mainstream compilers [130],

raising the bar against COOP-like attacks.

The recent Control-Flow Bending (CFB) [25] evaluates the general e�ective-

ness of even ideal (context-insensitive) CFI solutions and evidences their limita-

tions against sophisticated CFG-aware attacks. Compared to regular CFI, CCFI

makes such attacks harder, given that entire paths (rather than individual CFG

edges) are checked for validity. CFB attacks have already been shown to be more

di�cult against CFI solutions that are complemented by a shadow stack [25].

Compared to such solutions, CCFI does not rely on in-process runtime informa-

tion and can enforce context-sensitive invariants on both forward and backward

edges, thereby providing improved defenses against CFB attacks.

2.8 Conclusion

While Context-sensitive CFI (CCFI) can signi�cantly enhance the security of

state-of-the-art defenses against control-�ow diversion attacks, it has long been

perceived as ine�cient and impractical for real-world adoption. This chapter has

shown that the three fundamental challenges towards fast and practical CCFI—

e�cient path monitoring, analysis, and veri�cation—can indeed be e�ectively

addressed in a realistic way on commodity platforms.

To substantiate our claims, we implemented Patharmor, the �rst binary-

level CCFI solution that e�ciently enforces context-sensitive CFI policies on

both backward and forward edges. Patharmor addresses all the CCFI funda-

mental challenges using low-overhead hardware registers to track control edges,

a scalable on-demand and constraint-driven context-sensitive static analysis, and

a path cache accessed at sensitive program points. Patharmor yields compa-

i
i

i
i

i
i

i
i

2.8. CONCLUSION

PA
TH

A
R

M
O

R

39

rable or better performance than prior context-insensitive CFI solutions, while

enforcing much stronger context-sensitive invariants and providing a general

framework to implement arbitrarily sophisticated CCFI policies.

Shared Authorship

I share �rst authorship on Patharmor with Dennis Andriesse. Dennis is the

main author of the veri�cation/static analysis component, while my focus was

on the kernel module and runtime implementation.

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

TY
PE

A
R

M
O

R

3 A Tough call:
Mitigating Advanced
Code-Reuse A�acks At
The Binary Level

Binary-level Control-Flow Integrity (CFI) techniques are weak in determining

valid targets for indirect control �ow transfers on the forward edge. The lack of

source code forces existing techniques to resort to a conservative address-taken

policy that results in overapproximation. Source-level solutions can accurately

infer the targets of indirect callsites and thus detect malicious control-�ow trans-

fers more precisely. Since source code is not always available, however, o�ering

similar quality of protection at the binary level is important, but also more chal-

lenging than ever: recent work demonstrates powerful attacks, such as Counter-
feit Object-oriented Programming (COOP), which made the community believe

that mitigating control-�ow diversion attacks at the binary level is impossible.

In this chapter, we propose binary-level analysis techniques to signi�cantly

reduce the number of possible targets for indirect callsites. More speci�cally,

we reconstruct a conservative approximation of target function prototypes by

means of use-def analysis at possible callees. We then couple this with liveness

analysis at each indirect callsite to derive a many-to-many relationship between

callsites and target callees with a much higher precision compared to solutions.

Experiments on server applications and SPEC CPU2006 show that Typear-

mor, a prototype implementation of our approach, is e�cient—with a runtime

overhead of less than 3%. We evaluate to what extent Typearmor can mitigate

COOP and other advanced attacks and show that our approach reduces the num-

ber of targets on the forward edge. Moreover, we show that Typearmor stops

published COOP exploits, providing concrete evidence that strict binary-level

CFI can still mitigate advanced attacks, despite the absence of source informa-

tion or C++ semantics.

41

i
i

i
i

i
i

i
i

42 CHAPTER 3. TYPEARMOR

3.1 Introduction

Control-Flow Integrity (CFI) [2] is one of the most promising ways to stop ad-

vanced code-reuse attacks. Unfortunately, enforcing it without access to source

code is hard in practice. The reason is that it requires an accurate Control-Flow

Graph (CFG) and extracting such CFG from binary code is an undecidable prob-

lem. As a result, most existing binary-level CFI implementations base their in-

variants on an approximation of the CFG which leaves enough wiggle room for

an attacker to launch successful exploits [26, 27, 43, 57, 58, 121].

While it may be possible to stop some advanced attacks using a perfect shadow

stack implementation [25], there is one class of attacks for which there is no ex-

isting defense at the binary level whatsoever. This class of function-reuse attacks,

exempli�ed by Counterfeit Object-Oriented Programming (COOP) [120], chains

together calls to existing functions through legitimate callsites. This strategy pre-

serves the integrity of the shadow stack, while abusing the overapproximation of

the extracted CFG to call the wrong functions from these callsites. This attack is

powerful since it allows for exploits that integrate smoothly with legitimate code

execution. Unless there is deep knowledge of the C++ class hierarchy semantics,

which we can only extract if we have the source code [39], it is hard to tell a

COOP exploit apart from a legitimate code sequence [120]. Lacking a handle on

the functions that a callsite may target leaves all the existing binary-level CFI

solutions unable to stop COOP attacks.

In this paper, we revisit binary-level protection in the face of COOP attacks

and follow-up improvements [39]. We explore to what extent we can narrow

down the set of possible targets for indirect callsites and stop exploitation at the

binary level. Our conclusion is not that all possible attacks can be stopped: even

the tightest CFI solutions with access to source code are unable to guarantee per-

fect protection against all possible attacks [25]. Nevertheless, we demonstrate

that Typearmor, our binary-level protection prototype, can stop all COOP at-

tacks published to date and signi�cantly raise the bar for an adversary. More-

over, Typearmor provides strong mitigation for many types of code-reuse at-

tacks (CRAs) for programs binaries, without requiring access to source code. As

researchers have shown that it is easy to bypass existing binary-level CFI de-

fenses [26, 27, 43, 57, 58, 121], this is a signi�cant improvement.

Typearmor incorporates a forward-edge CFI strategy that relies on conserva-

tively reconstructing both callee prototypes and callsite signatures and then uses

this information to enforce that each callsite strictly targets matching functions

only. For example, Typearmor disallows an indirect call that prepares fewer ar-

i
i

i
i

i
i

i
i

3.1. INTRODUCTION

TY
PE

A
R

M
O

R

43

guments than the target callee consumes. Additionally, Typearmor incorporates

a novel protection policy, namely CFC (Control-FlowContainment), which further

reduces the possible target set of callees for each callsite. CFC is based on the

observation that, if binary programs adhere to standard calling conventions for

indirect calls, unde�ned arguments at the callsite are not used by any callee by

design. Typearmor trashes these so-called spurious arguments and thus breaks

all published COOP and improved COOP-like exploits. These exploits all chain

virtual method calls that disrespect calling conventions to achieve convenient

data �ows between gadgets [39]. CFC eliminates these data �ows via unused

argument registers and thus stops such exploitation attempts.

Current binary-level solutions enforce “loose” forward-edge CFI policies, of-

ten allowing control transfers from any valid callsite to any valid referenced en-

try point [154, 157]. In the best case, existing policies only reduce the target

set by removing all entry points of other modules unless they were explicitly

exported or observed at runtime [105]. In contrast, Typearmor matches up in-

direct callsites with a more precise target set in a many-to-many relationship.

It relies on use-def analysis at all possible callees to approximate the function

prototypes, and liveness analysis at indirect callsites to approximate callsite sig-

natures. This e�ectively leads to a more precise CFG of the binary program in

question, which could also be used by existing mitigation systems to amplify

their (context-insensitive) invariants (e.g., PathArmor [131]).

Can TypeArmor defend against any exploit? No. Typearmor protects only

forward edges at the binary level. As shown by previous work, a backward-edge

protection mechanism (e.g., a shadow stack [41] or context-sensitive CFI [131])

is still essential to ensure the integrity of return addresses at runtime [25, 57].

In this paper, we assume an ideal backward-edge protection mechanism such

as a shadow stack with no design faults [34]. Typearmor complements such

backward-edge protection by countering attacks that take place without violat-

ing the integrity of the return path. Speci�cally, Typearmor provides strong

(but not infallible—given also the fundamental CFI limitations [25]) protection

against COOP exploits as well as improved COOP-like exploits [39] and similar

advanced attacks such as Control Jujutsu [49].

Is TypeArmor superior to approaches like IFCC/VTV and CPI? No. IFCC/VTV

and CPI [83, 130] are strong source-level defenses which produce binaries that

can resist control-�ow hijacking attacks. Source-based techniques are more pre-

cise in using �ne-grained program constructs (such as the C++ class hierarchy

or generic data types) for mitigation purposes. However, there are still impor-

tant reasons to study and improve binary-level defenses. First, the source code

i
i

i
i

i
i

i
i

44 CHAPTER 3. TYPEARMOR

for many o�-the-shelf programs is not always available. Second, real-world pro-

grams rely on a plethora of shared libraries and recompiling all shared libraries

is not always possible. This is true even for purely open-source projects. For

example, in VTV [130], the authors evaluate their system on ChromeOS, which

includes legacy libraries. The authors had to manually whitelist these libraries,

a task which is not trivial (certain code has to be annotated) and does not scale.

Third, even if the source code of the libraries is available, recompiling big projects

with dynamic dependencies is, again, a demanding task. Even state-of-the art de-

fenses that enforce CFI policies at the source level such as SAFEDISPATCH [66]

do not support dynamic libraries. Note that this is not a minor issue: mixing

CFI-protected with non-protected code is impossible. If CFI is applied in just a

portion of the CFG, crashes due to legitimate execution are possible. In contrast,

with a binary-level solution, we can o�er strong protection even if the source

code is not available or when recompilation is not feasible (or desirable).

In summary, we make the following contributions in this paper:

• We introduce techniques to recover callsite signatures and callee proto-

types for security enforcement purposes. Our techniques yield binary-level

control-�ow invariants which approximate the type-based invariants used

in source-level solutions [130] and are thus much more precise than those

used in prior binary-level CFI solutions [105, 154, 157].

• We demonstrate that fully-precise, static forward-edge CFI is inherently

hard to achieve in a conservative fashion, due to the unavoidable preci-

sion loss when deriving traditional CFI-style target-oriented invariants at

the binary level. To compensate for the precision loss, we complement our

CFI strategy with a new technique termedControl-Flow Containment (CFC).

CFC relies only on our callsite analysis to e�ectively contain code-reuse at-

tacks. This approach improves the quality of control-�ow invariants of tra-

ditional target-based approaches, overall resulting in a strict binary-level

CFI strategy.

• We implement and evaluate Typearmor, a new strict CFI solution for x86_-

64 binaries. Our experimental results demonstrate that Typearmor can

enforce much stronger forward-edge invariants than all the existing binary-

level CFI solutions, while, at the same time, introducing realistic runtime

performance overhead (< 3% on SPEC).

• We show that our strict binary-level CFI strategy can mitigate advanced

attacks in complete absence of source information or C++ semantics. For

i
i

i
i

i
i

i
i

3.2. MOTIVATION: KEY REQUIREMENTS FOR COOP

TY
PE

A
R

M
O

R

45

example, Typearmor can stop all published COOP [120] exploits and their

improvements [39].

The remainder of this paper is organized as follows. We start with a more

detailed discussion of our main goal: mitigating COOP-like attacks at the binary

level. Section 3.2 provides a short introduction of how COOP works and Sec-

tion 3.3 presents an overview of how Typearmor is designed to mitigate COOP

attacks. Section 3.4 and 3.5 present Typearmor internals. Section 3.6, Section 3.7,

and Section 3.8 evaluate Typearmor’s performance and security. Finally, Sec-

tion 3.9 surveys related work and Section 3.10 concludes the paper.

3.2 Motivation: Key Requirements for COOP

Counterfeit Object-Oriented Programming (COOP) is a novel attack technique

that belongs to the class of code-reuse attacks (CRAs) [120]. While the core ideas

have general applicability, the attack strategy described in [120] relies on Object

Oriented Programming (OOP) principles and mainly targets C++ applications. In

contrast to many proposed CRAs, COOP makes the exploit’s control �ow more

akin to a benign execution �ow. In this section, we summarize the technique with

a focus on its key requirements: the ability to target unrelated virtual functions

from an indirect callsite, and especially to pass data from one COOP gadget to

another. In the next section, we show how Typearmor impacts the attacker’s

possibilities to satisfy these requirements.

By exploiting a memory corruption bug, COOP diverts execution �ow to a

chain of existing virtual function calls (so called vfgadgets) via an initial vfgad-
get. In practice, an attacker can control said virtual function calls by injecting

multiple, attacker-controlled counterfeit objects that reuse existing vtables in the

binary. By choosing the correct object layout and overlapping multiple objects,

an attacker can ensure intended data �ows between di�erent gadgets.

The original COOP paper [120], along with its improvement [39], proposes

two main types of initial vfgadgets: (1) the main-loop gadget (ML-G) and (2)

the recursive gadget (REC-G). Such gadgets are responsible for dispatching the

vfgadget chain using virtual function calls. The former depicts “[a] virtual func-

tion that iterates over a container [...] of pointers to C++ objects and invokes a

virtual function of these objects" [120]. The latter, in turn, requires at least two

consecutive virtual function calls on distinct (counterfeit) objects. The �rst call

dispatches a vfgadget, whereas the last recurses into (any) REC-G.

Proper use of object overlapping may enable an attacker to pass data through

object �elds, if applicable. For example, one vfgadget may write to and another

i
i

i
i

i
i

i
i

46 CHAPTER 3. TYPEARMOR

gadget then reads from, the same object �eld. In this paper, we refer to this strat-

egy to pass data between vfgadgets as an explicit data �ow. Schuster et al. found

that cases that allow for explicit data �ows are “rare in practice." [120]. Other

approaches focus on the calling convention assumed by the indirect call that dis-

patches the vfgadgets. The ability to pass data to a vfgadget then depends on the

choice of the ML-G, or REC-G, respectively. In the case of x86_64 calling con-

ventions, the �rst six arguments are passed through registers (assuming System

V ABI). These registers are scratch registers that are not preserved by a function.

Consequently, if the ML-G or REC-G does not destructively update one of these

registers in between virtual function calls, changes made to such a register by a

vfgadget are implicitly passed to the next gadget. In other words, they represent

an implicit data �ow. Similar approaches for other platforms exist as well, for

which we refer the reader to the original paper [120].

3.3 Overview

In this section, we �rst outline the threat model and assumptions under which

Typearmor operates. We then give a high-level overview of Typearmor and

discuss the impact of Typearmor’s measures on COOP exploits.

3.3.1 Threat Model and Assumptions

We assume a common threat model where an attacker can read/write the data

section and read/execute the code section of a vulnerable program. The pro-

gram does not contain self-modifying code, W ⊗X is in place, and the attacker

is able to hijack the program’s control �ow by means of a memory-corruption

vulnerability. We seek to defend against attacks with a binary-level version of

(forward-edge) Control-Flow Integrity (CFI) [2]. In other words, our solution

should support legacy binaries without access to source or debug symbols. In do-

ing so, we focus on 64-bit binaries and analyze only function parameters that are

passed via registers (those passed on the stack are conservatively handled). De-

pending on the ABI, this gives Typearmor the capability to track at most 4 (in the

case of Microsoft’s x64 calling convention) or 6 (System V ABI) arguments. For

simplicity, our implementation currently does not take �oating-point arguments

passed via xmm registers into consideration; future work may improve Typear-

mor by extending static analysis to also include these registers. Nevertheless,

as we show in Section 3.6, this still gives us enough information to stop even

state-of-the art code-reuse attacks.

Obfuscated or hand-crafted binaries are out of scope and we assume an orig-

i
i

i
i

i
i

i
i

3.3. OVERVIEW

TY
PE

A
R

M
O

R

47

inating compiler that generally adheres to one of the standard calling conven-

tions (to allow our static analysis to derive meaningful invariants), but can also

occasionally resort to custom calling conventions for functions which are not ex-

ternally visible due to standard compiler optimizations (which our analysis can

conservatively handle). We discuss compiler optimizations in more detail in Sec-

tion 3.4.2, illustrating how Typearmor can support optimizations from standard

compilers and how it can be also extended to support optimizations from non-

standard (or future) compilers. We stress that the current Typearmor prototype

works on stripped binaries that have been compiled using di�erent optimization

levels (namely -O0, -O1, -O2, and -O3).

3.3.2 TypeArmor: Invariants for Targets and Callsites

Typearmor deploys a combination of two type-based control-�ow invariants,

resulting in a strict forward-edge protection strategy: target-oriented invariants
and callsite-oriented invariants. Target-oriented invariants are based on tradi-

tional CFI policies [2], but callsite-oriented invariants have not been explored

for binaries before. Speci�cally, Typearmor enforces callsite-oriented invariants

through a novel containment technique which we term Control-Flow Contain-

ment (CFC). As noted above, extracting complete function and callsite type infor-

mation at the binary level is hard in practice, and impossible in the general case.

Therefore, Typearmor relies on a relaxed form of type information (argument

count and return value use), and enforces a many-to-many type-based match-

ing strategy between callsites and targets. Typearmor applies such type-based

invariants, inspired by source-level CFI techniques [130], at the binary level for

the �rst time.

In particular, Typearmor ensures that indirect callsites that set at mostmax

arguments cannot target functions that use more than max arguments. For in-

stance, if Typearmor �nds a callsite that prepares at most 2 arguments, it ensures

that the callsite can never jump to a function that consumes 3 targets or more.

Additionally, Typearmor ensures that indirect callsites that expect a return value

(non-void callsites) can never jump to a callee that does not prepare such value

(void functions). Enforcing such invariants at the binary level is challenging and

subject to the precision of argument count and return use information derived

by static analysis at both the callsite and at the target function.

While CFI’s target-oriented invariants seek to identify the target set for each

callsite, CFC follows a completely target-agnostic approach and thus is subject

to the precision of argument count information only at the callsite. CFC relies

on callsite-oriented invariants to scramble all the unused function arguments at

i
i

i
i

i
i

i
i

48 CHAPTER 3. TYPEARMOR

every callsite, so that illegal (type-unsafe) function targets are not inadvertently

exposed to stale (and potentially attacker-controlled) arguments. Similarly, at

the callee, CFC is caller-agnostic and relies on liveness analysis to detect void

functions. For these, Typearmor scrambles unused return registers before the

function returns. This strategy disrupts many type-unsafe function argument

reuse attempts, which are required by existing COOP exploits.

Note that, in order to be conservative and support existing program function-

ality, Typearmor’s callsite analysis is may only report an overestimation of the

number of prepared arguments, while the callee analysis should report only un-
derestimation. As an example, consider a callsite cs that prepares 3 arguments

and a callee f that consumes 3 arguments. Typearmor may detect that cs pre-

pares 4 arguments and f only uses 2 arguments. Typearmor’s invariants dictate

that, in this scenario, cs is still allowed to call f . Examples of how callsite over-

estimation and callee underestimation occur are further discussed in Section 3.4.

Typearmor uses static analysis results to enforce control-�ow invariants at

runtime. The enforcement component relies on binary rewriting supported by

the Dyninst binary analysis framework [11] to enforce CFI, CFC, or both (default

con�guration).

CFI Typearmor relies on the caller-to-callee mapping derived by our target-

oriented invariants analysis. For this purpose, Typearmor instruments each

function according to its type and each indirect callsite to check if it calls the

appropriately typed function. In contrast to source-level type-based CFI solu-

tions [130], which bene�t from one-to-one (i.e., precise function signature) map-

pings to detect type-incompatible targets, Typearmor relies on a many-to-many

mapping to sidestep the problem of identifying precise function signatures at the

binary level—infeasible in general [110]. This strategy e�ectively results in a hi-

erarchical function type structure when checking target-oriented invariants, as

exempli�ed in Figure 3.1. As shown in the �gure, the �rst callsite (at the top)

passes 3 arguments to the callee, which thus belongs to set T3 (also including

sets T0, T1 and T2). The second callsite (at the bottom), in contrast, passes only

1 argument to the callee and thus requires that the callee belongs to the set T1

(also including T0).

Note that the invariant that a non-void callsite cannot call a void function

(omitted from Figure 3.1 for simplicity) doubles the number of function types:

the set of functions that a particular non-void callsite may target is a subset of

the possible targets for void callsites. This is because, at the binary level, it is

only possible to determine potential non-void callsites. If our analysis �nds that

i
i

i
i

i
i

i
i

3.3. OVERVIEW

TY
PE

A
R

M
O

R

49

T0

T1

T2

T3
T4

movl %rax,%rdi
movl %rbx,%rsi
mov 0x123,%rdx
call *0x8(%rax)
... ...
... ...
movl 0x44,%rdi
call * %rax

call with 3
arguments

call with 1
argument

Figure 3.1. Hierarchical structure of binary-level function types. Ti is a set of functions
that take i or less arguments. The first indirect call instruction (with 3 prepared
arguments) may call functions in T3 (which also include functions that are in T2,
T1, and T0), while the second indirect call instruction (preparing only 1 argument)
may only target functions that are in T1 (which includes those that are in T0).

a callsite is not non-void, it cannot guarantee that this is a void callsite (the caller

may call a non-void function, but never use its return value).

CFC Typearmor relies on the caller-to-type mapping derived by the callsite-

oriented invariants analysis. For this purpose, it instruments each indirect call-

site to scramble unused arguments before transferring control to the callee and in-

struments each void function to scramble unused return arguments before trans-

ferring control back to the caller.

A thorough analysis ofTypearmor’s static analysis is presented in Section 3.4,

while we discuss the runtime component in Section 3.5.

3.3.3 TypeArmor’s Impact on COOP

Typearmor’s CFC enforces a maximum number of arguments prepared at a call-

site and scrambles the unused registers. This severely impacts the ability of an

attacker to enable data �ow between gadgets.

As discussed in the original COOP paper [120], data �ow via object �elds is

hard to achieve in practice due to a lack of useful gadgets. Instead, in the case of

the x86_64 System V ABI, Schuster et al. suggest using unused argument registers

to achieve data �ow between indirect calls in the ML-G or REC-G, respectively.

This only works if the invoking gadget does not update the register destructively.

However, CFC is explicitly designed to introduce destructive updates of unused

argument registers before an indirect call and mitigates this data-passing strat-

egy. Furthermore, Typearmor’s CFI implementation reduces the target set of

the virtual function calls by the main-loop and recursive gadgets considerably. It

i
i

i
i

i
i

i
i

50 CHAPTER 3. TYPEARMOR

prohibits any forward edges to functions that expect more arguments than the

callsite prepares.

Needless to say, both aspects rely on the accuracy of Typearmor in terms of

callsite coverage in general and argument count identi�cation for both callsites

and target functions. Hence, implementing Typearmor at the binary level is

challenging from a research point of view and never as accurate as source-level

solutions. However, we will show that it is e�ective in practice. In the next two

sections, we look at the static analysis and dynamic enforcement of Typearmor’s

invariants.

3.4 Static Analysis

Static analysis in Typearmor seeks to detect (1) the maximum number of pre-

pared arguments at indirect callsites, (2) the minimum number of consumed ar-

guments at possible callees, and (3) the preparation (callees) and expectation (call-

sites) of return values. Since Typearmor targets binaries, the analysis works on

disassembled code. For this purpose, we leverage the Dyninst binary analysis

framework which is capable of constructing Control-Flow Graphs (CFGs) for

both program binaries and libraries [11].

3.4.1 Callee Analysis

We use static analysis to determine the argument count at the callee side. Given a

set of address-taken (AT) functions
1
, Typearmor iterates over each function and

performs inter-procedural liveness analysis [171]. The analysis focuses on col-

lecting state information on registers to determine if they are used for passing

arguments or not. For a given path of instructions or basic blocks according the

CFG, a register can be in one of the following states: read-before-write (R) (data

are always read from this register before new data are written to it), write-before-
read (W) (this register is always written to before it is read), or clear/untouched (C)

(this register is never read or written to). The state of a particular basic block con-

tains the combined register state for all argument registers. The analysis starts at

the entry block of an AT function and iterates over the instructions to determine

the usage of registers. If all argument registers are either R or W, the analysis

terminates. However, if at least one register is in a C state, a recursive forward
analysis starts until the block has no outgoing edges. Note that the analysis takes

special care about variadic functions, which we discuss below.

1
A function f is de�ned to have its address taken if there are one or multiple instructions in the binary

that load the entry point of f into memory. By de�nition, indirect calls can only target AT functions.

i
i

i
i

i
i

i
i

3.4. STATIC ANALYSIS

TY
PE

A
R

M
O

R

51

Forward analysis A recursive analysis loops over all outgoing edges of the

basic block to get a pointer to the next basic block to analyze. We distinguish be-

tween direct calls, indirect calls, return instructions, and regular outgoing edges

(e.g., jump instructions). Depending on the edge type, di�erent operations are

performed.

For direct calls, the next basic block to analyze is the entry block of the target

function. We also retrieve the fall-through basic block for this instruction, which

is the block to be executed after the direct call returns. For each direct call, we

push the fall-through block on a stack that Typearmormaintains, which we later

use to analyze return instructions (see below). In the case of direct calls that never

return (e.g., calls to functions that exit), we do not retrieve a fall-through block.

We detect such calls by checking whether they target a known function that

exits (e.g., exit@plt). This analysis is again recursive so that we can correctly

wrappers around exit as non-returning functions.

The analysis cannot statically infer the target of the indirect calls and we

thus have to be conservative. We assume that the target writes all arguments and

stop the recursion, transforming all remaining clear registers into a write-before-
read state.

For return instructions, we pop a fall-through basic block from the stack

and use it as the next basic block in the analysis. An empty stack indicates the

end of the analyzed function and terminates the recursive analysis.

We handle other edge types (including indirect jumps, for which we rely on

Dyninst to resolve its targets) in the same way: the targets of the edge are set as

the next basic blocks in the analysis.

Finally, to avoid loops during the analysis, we keep track of all blocks ana-

lyzed so far. When the analysis is about to recurse, we check whether we already

analyzed the next basic block, and if so, continue with the next edge. In addition,

we use a cache to avoid multiple analysis passes on the same basic block. No-

tice that the latter is just an optimization for speeding up the analysis (which is

o�ine), and it does not a�ect the accuracy of the results.

Merging paths The value returned by Typearmor’s recursive forward static

analysis for a basic block B, which has n outgoing edges, provides us with a set

of states Si (i = 1, 2, . . . n). These states represent argument usage information

for each path following edge i. Each state is represented by a vector composed

by the state of each one of the six argument registers. Typearmor combines

these states into a superstate S that denotes the argument liveness for any path

following B. For this purpose, we use a conservative policy that mandates that

i
i

i
i

i
i

i
i

52 CHAPTER 3. TYPEARMOR

the state for argument register c in S can only be R if the state for c is R for all

states Si (i = 1, 2, . . . n) following B. In other words, states W and C always

supersede R, but both (W and C) are neutral with each other. After computing

S, Typearmor combines it with SB , the state information for B. The merging

policy here is slightly di�erent in that states other than C inSB always supersede

states in S. This is becauseB is executed before any of its following basic blocks.

For an actual example of how path merging works, please refer to Figure 3.3 on

page 54.

Argument count Once the recursive analysis converges to a de�nite state for

the entry basic block of a function, the argument count is set using the highest

argument register that is marked as R. For instance, the System V ABI uses rdi,

rsi, rdx, rcx, r8, and r9, as arguments registers. Therefore, if r9 has a read-

before-write state, we conclude that this particular function expects at least 6

arguments. If r9 is W or C, then r8 is examined, and so on.

Variadic functions Since variadic functions can take any number of arguments

and thus may use all argument registers, variadic arguments may end up being

passed in both CPU registers and memory (via the stack). To support easy manip-

ulation of variadic arguments, modern compilers tend to move all the variadic

arguments onto the stack in successive order upon entry of a variadic function.

To make sure that the forward static analysis does not erroneously interpret the

moving of argument registers to the stack as read-before-write operations (and

conclude that this function expects more arguments than are de�ned), Typear-

mor identi�es variadic functions by means of pattern matching.

A function is labeled to contain n possible variadic arguments i� (1) a series

of n argument registers, starting from the last argument register (r9 for the Sys-

tem V ABI), are marked R, (2) these reads occur in the same basic block (and in

the appropriate order), and (3) the arguments are written on the stack. If Typear-

mor �nds that a function contains n argument registers, it limits the maximum

number of arguments for this function as computed by our forward analysis to

max−n, wheremax is de�ned to be the maximum numbers of arguments that

can be passed via registers (6 for the System V ABI). Figure 3.2 illustrates the

operation of Typearmor’s variadic function detection mechanism using as an

example the ngx_snprintf function.

We tested our variadic function detection mechanism against binaries com-

piled with both clang and gcc and found zero cases where a variadic function

was mistakenly detected as a regular one. We did, however, observe a handful of

i
i

i
i

i
i

i
i

3.4. STATIC ANALYSIS

TY
PE

A
R

M
O

R

53

ngx_snprintf

u_char * ngx_cdecl
ngx_snprintf(u_char *buf, size_t max, const char *fmt, ...)
{
 u_char *p;
 va_list args;

 va_start(args, fmt);
 p = ngx_vslprintf(buf, buf + max, fmt, args);
 va_end(args);
 return p;
}

ngx_snprintf

40f34c: mov %r8,-0xb0(%rbp)
40f353: mov %rcx,-0xb8(%rbp)
40f35a: lea -0xd0(%rbp),%rax
40f361: mov %rax,-0x10(%rbp)
40f365: lea 0x10(%rbp),%rax
40f369: mov %rax,-0x18(%rbp)
40f36d: movl $0x30,-0x1c(%rbp)
40f374: movl $0x18,-0x20(%rbp)
40f37b: add %rdi,%rsi
40f37e: lea -0x20(%rbp),%rcx
40f382: callq 40eb90
40f387: add $0xd0,%rsp
40f38e: pop %rbp
40f38f: retq

40f310: push %rbp
40f311: mov %rsp,%rbp
40f314: sub $0xd0,%rsp
40f31b: test %al,%al
40f31d: je 40f345
40f31f: movaps %xmm0,-0xa0(%rbp)
40f326: movaps %xmm1,-0x90(%rbp)
40f32d: movaps %xmm2,-0x80(%rbp)
40f331: movaps %xmm3,-0x70(%rbp)
40f335: movaps %xmm4,-0x60(%rbp)
40f339: movaps %xmm5,-0x50(%rbp)
40f33d: movaps %xmm6,-0x40(%rbp)
40f341: movaps %xmm7,-0x30(%rbp)
40f345: mov %r9,-0xa8(%rbp)

Figure 3.2. Variadic function detection searches for a basic block that performs read-before-
write operations on a series of argument registers in consecutive order (either
from lowest to highest in the case of gcc, or vice versa for clang) without other
instructions in between. Observe in this particular example a group of instructions
near the address 0x40f345. The last three argument registers, namely r9, r8, and
rcx, are moved (read-before-write) to the stack through instructions contained in
a single basic block and in a specific order. Thus, this is a variadic function that
uses its last three argument registers to hold variadic arguments.

cases where a function was wrongly detected as accepting a variadic number of

arguments, leading to an underestimation of the number of arguments used (see

also Section 3.8).

Conservativeness A key property of the analysis performed by Typearmor

at the callee is that it is conservative and therefore underestimation of the argu-

ment count is possible. Some interesting cases are: (i) instructions that perform a

read and write on the same register (e.g., xor %rdi,%rdi or neg %r9), (ii) under-

estimated callees deriving from functions mistakenly detected as variadic, (iii)

functions with many arguments (some of them passed through the stack), (iv)

analyzed paths that contain further indirect calls, and (v) callbacks that do not

i
i

i
i

i
i

i
i

54 CHAPTER 3. TYPEARMOR

(b) Register merging

Loop Edge

47ee30
C C C C C C

47ee28
R C C C C C

C C C C C C

47edf0
R C C C C C

R C C C C C R C R C C R&

47ee21
R C C R C C

R C C C C C

47ee1a
R C C C C C

R C C R C C

47ee0e
R C R C R C

R C C C C C R C C R C C&

47edc0
R R C C C *

R R C C C *

R R C C C W C C C C C C&

R C C C C C

47edcf
C R C C C W

R C R C R C R C C R C C&

47edfb
R C R C C R

(a) CFG

set_errno

False True

TrueFalse

True

True

True

False

False

Fall through

Fall through

47edc0: push %rbp
47edc1: mov %rsp,%rbp
47edc4: cmp $0xffffffd5,%esi
47edc7: sete %al
47edca: test %rdi,%rdi
47edcd: je 47ee30

R R C C C C

47edcf: movzbl %al,%r9d
47edd3: shl $0x8,%r9d
47edd7: cmp $0xffffffd5,%esi
47edda: mov $0x6e,%ax
47edde: cmovne %si,%ax

C R C C C W

47edfb: mov %ax,0x114(%rdi)
47ee02: or %r9d,0x110(%rdi)
47ee09: test %rdx,%rdx
47ee0c: je 47ee21

R C R C C R

47ee0e: test %r8d,%r8d
47ee11: mov %rdx,0xc0(%rdi)
47ee18: je 47ee21

R C R C R C

47ee28: mov (%rdi),%rdi
47ee2b: test %rdi,%rdi
47ee2e: jne 47edf0

R C C C C C

47edf0: cmpw $0x100,0x11c(%rdi)
47edf9: jl 47ee28

R C C C C C

47ee30: pop %rbp
47ee31: retq

C C C C C C

47ee1a: orb $0x2,0x103(%rdi)
R C C C C C

47ee21: mov %cx,0x11c(%rdi)
R C C R C C

Fall through

False

Figure 3.3. Callee analysis for void set_errno(address_item *addrlist, int errno_-
value, uschar *msg, int rc, BOOL pass_message) (in Exim). Observe how
merging paths works. The basic block starting at 0x47edfb (emphasized in bold)
has state SB = (R,C,R,C,C,R), since rdi, rdx, and r9 are read. There are
two incoming states to this block, namely S1 = (R,C,R,C,R,C) and S2 =
(R,C,C,R,C,C), which are combined to a superstate S = (R,C,C,C,C,C)
(C always supersedes). Finally, the superstate is combined with the block state,
but this time R supersedes and hence the output state is (R,C,C,C,C,C) ∧
(R,C,R,C,C,R) = (R,C,R,C,C,R). The final state of all analyzed blocks
is (R,R,C,C,C, ∗), where the ∗ denotes that C does not supersedes W or vice
versa.

actually use all arguments. We stress that Typearmor correctly handles case (i)

and assigns the register either the state R or W depending on the used instruction

(e.g., xor %rdi,%rdi is W and neg %r9 is R). For (v), Typearmor yields better

results than a source-level analysis. As an example, consider a generic signal

handler implementation, where the signal number is always passed—and, thus,

at least one argument is expected to be passed to the callee—but not necessarily

used by the handler, something Typearmor can accurately infer.

Example of operation To illustrate how the analysis at the callee works, con-

sider the set_errno function (taken from Exim) in Figure 3.3. The entry basic

i
i

i
i

i
i

i
i

3.4. STATIC ANALYSIS

TY
PE

A
R

M
O

R

55

block contains read operations on the �rst two argument registers (rdi and esi).

At this point, the analysis cannot infer other possible arguments, but it can cer-

tainly proceed further. Based on the outcome of the conditional operation at

address 0x47edcd there are two available paths. In case the conditional check is

False, the fall-through basic block at o�set 0x47edcf should be followed, other-

wise, control should be transferred to address 0x47ee30. The latter path simply

returns and thus ends the function without any additional read-before-write op-

erations. Since the analysis is conservative, this short path is su�cient to con-

clude that a minimum of two arguments are used by this function.

To illustrate Typearmor’s forward merging process, we include a complete

merge graph for the set_errno function in Figure 3.3(b). Since merging is a

backward process, the �gure shows the CFG “up-side-down”. As an example

merging step, consider the basic block starting at 0x47edfb which has SB =

(R,C,R,C,C,R) (rdi, rdx, and r9 are read). There are two incoming states

to this block, namely S1 = (R,C,R,C,R,C) and S2 = (R,C,C,R,C,C),

which are combined to a superstate S = (R,C,C,C,C,C) (notice that C

always supersedes). Finally, the superstate is combined with the block state,

but this time R supersedes, and hence the output state is (R,C,C,C,C,C) ∧
(R,C,R,C,C,R) = (R,C,R,C,C,R).

3.4.2 Callsite Analysis

Typearmor iterates over each indirect callsite and performs a backward static

analysis—a variant of classical reaching de�nition analysis [171]—to detect the

prepared argument count at a particular callsite. The backward static analysis

collects state information on all possible argument registers, but unlike our for-

ward static analysis (Section 3.4.1), it only accounts for registers that are either

set (S) or not (T, trashed). In particular, Typearmor starts the analysis at the basic

block that contains the indirect call, and iterates over preceding instructions for

determining whether argument registers are S or T. If all argument registers are S,

Typearmor stops the analysis and assumes that the callsite uses the maximum

number of arguments. If some arguments cannot be considered either S or T

and the basic block has incoming edges, Typearmor starts a recursive backward

analysis.

Backward analysis Direct calls, returns, and other incoming edges are distin-

guished in the same fashion as in the callee analysis (see Section 3.4.1). For direct

calls, the preceding basic block to analyze next is the basic block where the direct

call originated. This means that if the backward analysis reached the entry block

i
i

i
i

i
i

i
i

56 CHAPTER 3. TYPEARMOR

of the function containing the inspected callsite, an inter-procedural backward

analysis at all the callers of this function is initiated. Return edges during back-

ward analysis indicate that the currently analyzed basic block has a predecessor

that performs a function call. Thus, at this point, traversing further in this path

is stopped and all remaining argument registers are marked as T: we assume that

argument registers are always reset between two calls. This means that analysis

is terminated and the state of this basic block is returned. Note that since indirect

call targets cannot be resolved statically, there are no indirect call edges.

Merging paths Path merging for the backward analysis is relatively straight-

forward: for all collected states of the incoming basic blocks, T always super-

sedes S (arguments must be set on all paths). Similar to the forward analysis,

once the recursive analysis is �nished, the number of prepared arguments is set

based on the states of the last write operations.

As an example, consider an indirect callsite cs that is reachable by two basic

blocks b1 and b2, both of which are preceded by another indirect call instruction.

If the backward analysis �nds that b1 writes to (sets) arguments register rdi, rsi,

and rdx (the �rst three argument registers), while b2 only sets rdi, Typearmor

concludes that cs prepares at most one argument.

Compiler optimizations Typearmor’s current implementation of backward

static analysis may yield false conclusions (underestimation of number of pre-

pared arguments) if the compiler deploys (inter-procedural) redundant argument

register write elimination. Two examples of such optimization, which the com-

piler may perform at code generation time, are shown in Figure 3.4. The example

in the left-hand side of Figure 3.4 shows how an inter-procedural write elimina-

tion pass may omit the second mov $0x1,%rdi instruction (depicted in red), since

rdi has already been set to the same constant value in foo. The example on the

right in Figure 3.4 shows a similar optimization instance, however eliminating

writes across functions.

After analyzing the source code of two popular compilers (clang and gcc),

we found no evidence of the presence of above optimization. Moreover, as we

show in Section 3.8, a thorough comparison of clang-generated binaries against

LLVM ground truth, across di�erent optimization levels, did not reveal any un-

derestimation of prepared arguments. These results con�rm that the assumption

that standard compilers always explicitly (re)set argument registers after a direct

(and not only indirect) call is safe. For nonstandard or future compilers that may

deploy inter-procedural write elimination optimizations, a possible solution is

i
i

i
i

i
i

i
i

3.4. STATIC ANALYSIS

TY
PE

A
R

M
O

R

57

1 foo(void)
2 mov $0x1, %rdi
3

4 bar(int arg1)
5 ...
6

7 main(void)
8 call foo
9 mov $0x1, %rdi

10 call bar
11

1 bar(int arg1)
2 ...
3

4 foo(int arg1)
5 ...
6

7 main(void)
8 mov $0x1, %rdi
9 call foo

10 mov $0x1, %rdi
11 call bar

Figure 3.4. Two variants of (inter-procedural) redundant argument register write elimination.
In both code snippets, a compiler optimization pass may omit the second mov
$0x1,%rdi instruction (highlighted in red). In the snippet on the le�, %rdi was
set to 1 in foo already and is never modified before the call to bar, making the
second mov operation redundant. A similar scenario occurs in the snippet on the
right-hand side: the compiler may conclude that rdi has been set before the call
to foo, and was never modified before the second mov instruction.

to continue backward analysis from indirect callsite cs2 until another indirect

call cs1 is found instead of a direct call: since the compiler does not know the

target of cs1 (or else it would have been a direct call), it shall reset all required

arguments for cs2, making our backward analysis between indirect calls safe by

design.

Conservativeness As with the callee analysis, Typearmor’s callsite analysis

should be conservative and therefore only allow for overestimation of the argu-

ment count. An interesting case to consider is how the analysis performs for

indirect callsites inside wrapper functions. Such functions may not need to reset

all argument registers, but simply ‘pass them through’ directly from its caller.

However, if the wrapper has its address taken, and is only called through indi-

rect functions, our backward analysis fails to �nd any incoming edges to the basic

blocks and must give up. In order to be conservative, Typearmor then decides

that the callsite inside the wrapper prepares the maximum number of arguments.

To improve static analysis results for callsites, we complement Typearmor to

accept pro�ling data to improve its CFG. Consider above scenario of an indirect

callsite inside a wrapper function. If a pro�le run �nds an edge from another

callsite to the wrapper, our static analysis can continue its backward analysis

and possibly reduce the number of allowed arguments.

i
i

i
i

i
i

i
i

58 CHAPTER 3. TYPEARMOR

pr_response_flush

#define RESPONSE_WRITE_NUM_STR(strm, fmt, numeric, msg) \
 pr_trace_msg(trace_channel, 1, (fmt), (numeric), (msg)); \
 if (resp_handler_cb) \
 pr_netio_printf((strm), "%s", resp_handler_cb(resp_pool,(fmt),\
 (numeric), (msg))); \
 else \
 pr_netio_printf((strm), (fmt), (numeric), (msg));

void pr_response_flush(pr_response_t **head) {

 RESPONSE_WRITE_NUM_STR(session.c->outstrm, "%s %s\r\n",
 last_numeric, resp->msg)

pr_response_flush

... ...
426e65: mov 0x5ea4c(%rip),%rdi
426e6c: mov 0x8(%rbx),%rdx
426e70: mov 0x10(%rbx),%rcx
426e74: mov $0x463a00,%esi
426e79: xor %eax,%eax
426e7b: callq *%r8
... ...

... ...
426d51: callq 434960 <pr_trace_msg>
426d56: mov 0x5eb73(%rip),%r8
426d5d: test %r8,%r8
426d60: mov 0x67c79(%rip),%rax
426d67: mov 0x38(%rax),%r15
426d6b: jne 426e65

Figure 3.6. Partial disassembly of the pr_response_flush function in ProFTPD that illus-
trates the working of our callsite analysis. The indirect call instruction at o�set
0x426e7b maps to the call to resp_handler_cb. Typearmor’s backward analysis
finds that the basic block that ends with this indirect call writes to the first four
arguments and thus continues analysis at incoming basic blocks. Only one such
block exists and it performs a write operation on the fi�h argument register (test
%r8,%r8). Since the path that leads to this block ends with a call to pr_trace_-
msg, Typearmor concludes that the indirect call callq *%r8 prepares at most 5
arguments.

Example of operation Consider pr_response_flush from ProFTPD, which is

depicted in Figure 3.6. Notice the indirect call located at o�set 0x426e7b which

maps to resp_handler_cb; a variadic function that takes two �xed arguments.

By analyzing the basic block, we infer that at least four argument registers are

live (due to the 4 mov instructions). Since there is no information for the two

additional argument registers (r8 and r9), through recursive analysis, Typear-

mor discovers all basic blocks directly pointing to 0x426e65. For this particular

scenario, one such block exists, starting at 0x426d56. This block contains an

instruction that moves a value into register r8, therefore this callsite is marked

to hold a �fth argument. For inferring if r9 is used as well, the analysis further

proceeds and �nds one basic block pointing to 0x426d56. This block contains a

return edge from pr_trace_msg, thus r9 cannot be used as an argument regis-

ter. As a result of the backward analysis, Typearmor concludes that the callsite

i
i

i
i

i
i

i
i

3.4. STATIC ANALYSIS

TY
PE

A
R

M
O

R

59

0x426e7b prepares at most �ve arguments, one more than the actual number of

prepared arguments (strm, fmt, numeric and msg).

3.4.3 Return Values

Adding information about return value usage improves the precision of Typear-

mor’s CFI implementation: if we �nd a callsite that expects a return value (a

non-void callsite), it should never target a callee that does not prepare a return

value (void functions). Extracting return usage information from callsites and

callees is similar to the previously described callee and callsite analysis and is

again conservative: a void callsite is allowed to target both void and non-void

callees.

Non-void callsites The detection of non-void callsites (i.e., callsites that expect

a return value), is done by searching for read-before-write operations on the the

register that holds return values (rax for the System V ABI). In essence, we apply

the forward analysis as used by our callee analysis, but now starting from the call-

site, and only for rax. The di�erence is that we keep the analysis intraprocedural

in order to remain conservative.

Void callees We detect void functions by applying the previously described

backward analysis at the exit points of a function (exit points are basic blocks

that end with a ret instruction). The backward analysis only searches for write

operations on rax which may indicate a set return value.

In order not to break programs, our non-void callsite analysis is conservative

and marks a callsite as void (allowing it to target both void and non-void func-

tions) if no read-before-write on return registers is found (the callsite may pass

the return value to a caller directly). Similarly, conservativeness at the callee re-

sults in an underestimation of the number of void functions: the compiler may

use return registers as scratch registers, which we cannot detect by looking at

disassembled instructions only. We describe the precision of our return value

analysis in Section 3.8.

Note that if a particular ABI speci�es that multiple registers may be used to

hold return values (like the System V ABI allows callees to use the register pair

rax:rdx), Typearmor could be extended to perform a similar analysis on those

as well.

i
i

i
i

i
i

i
i

60 CHAPTER 3. TYPEARMOR

3.5 Runtime Enforcement

In this section, we describe how Typearmor uses the results from the static

analysis, discussed in Section 3.4, to provide security guarantees at runtime. Dur-

ing application load time, Typearmor’s runtime component instruments the ap-

plication’s binary and loaded libraries to enforce our CFI and CFC policies. We

achieve this by adding integrity and containment code at the forward edges and

labels at function entry points. The runtime component can be split in three

parts: (1) shadow code memory preparation, (2) CFI enforcement, and (3) CFC

enforcement.

3.5.1 Shadow Code Memory Preparation

At every library load, this part of Typearmor’s runtime component allocates

memory to store instrumented code, dubbed shadow code (as implemented by

Dyninst [11]). The shadow code is essentially a copy of the original code that also

contains the instrumentation of the callsites. Program execution is performed

using the instrumented shadow code. Whenever we reach an indirect callsite

during normal program execution, the instrumentation code at this location per-

forms an integrity check between the type of the callsite and the type of the

callee. If the types are compatible with each other, the callsite branches to the

callee. Note that the branch target of the callsite still remains in the original code

region. Therefore, we replace the beginning of each AT function in the original

code with a jump instruction that jumps to the corresponding function in the

shadow code region.

We perform the integrity check by retrieving and processing the function’s

label, located right before the function entry point in the original code region.

Using this strategy, we do not have to ensure that our label does not overwrite

code since the code that is executed is located in the shadow code region. Choos-

ing the right label is not an easy task because we have to verify that this label

does not occur at locations other than AT functions.

We tackle this problem with an approach similar to the pointer masking tech-

nique discussed by Wahbe et al. [139]. After moving all the code to the shadow

code region, the unused locations in the original code region (i.e., all but AT func-

tion entry points) are �lled with trap instructions
2
. Furthermore, during program

execution, the integrity check that is performed at indirect callsites �rst masks

the target address, so it can only point to the original code region, before con-

tinuing the execution. Using this strategy, indirect callsites can only point to

2
Byte 0xCC is a trap instruction and disassembles to int3.

i
i

i
i

i
i

i
i

3.5. RUNTIME ENFORCEMENT

TY
PE

A
R

M
O

R

61

compatible AT functions.

Note that without the added instrumentation for type compatibility checks,

the implementation with the shadow code region results in a coarse-grained CFI

solution for forward edges, in which indirect callsites can target all AT functions

without any restrictions.

3.5.2 CFI Enforcement

Typearmor instruments binaries for enforcing that callsites can only target func-

tions with a compatible type. This essentially means (1) a callsite with a higher

number of prepared arguments can target all the functions that any callsite with

a lower number of prepared arguments can also target, but not vice versa, and

(2) a callsite that expects a return value can only target functions that return a

value, whereas a callsite that does not expect a return value can target both func-

tions that do and do not return a value. To implement these policies, Typearmor

has to instrument both, callsites and callees, based on the information collected

through static analysis (see Section 3.4).

Callee instrumentation We label each AT function (i.e., prepend it with a

magic number) similar to the original instrumentation scheme of Abadi et al. [2].

In the context of Typearmor, there are seven possible labels (no arguments (0)

to all arguments (6)), therefore, we use a 3-bit representation. In addition, we use

one more bit to represent whether the function returns a value. We use 1 to en-

code void functions and 0 for functions that return a value. This is an important

design decision for the callsite instrumentation, because callsites that expect a re-

turn value need to be handled in a special way (i.e., they can only target non-void

functions) and this allows us to do it with just one extra instruction.

In practice, we use a 4-byte label and encode the function type using four

bits of the label. For the return type, we use the least signi�cant bit and, for

the number of arguments, the adjacent three bits of the label. For example, we

represent the bits of a void function that has four arguments according to the

static analysis as 1001.

To have a unique combination of four bytes that does not occur at any other

code location, we choose 0xCCCCCC40 as a base label and use the four least sig-

ni�cant bits to encode the function type. This form is suitable because all unused

bytes are set to the trap instruction with which also the original code region is

�lled (see Section 3.5.1). The upper half of the least signi�cant byte is set to four,

3
In little endian, the label 0xCCCCCC40 would be represented as 0x40 0xCC 0xCC 0xCC in memory,

which assembles to the code REX INT3; INT3; INT3.

i
i

i
i

i
i

i
i

62 CHAPTER 3. TYPEARMOR

because regardless of the value of the lower half of the byte, this byte assembles

into the REX instruction pre�x for the trap instruction
3
. Since REX has no e�ect

when combined with the trap instruction, this label does not lead to valid targets

for an attacker.

Callsite instrumentation At each callsite, Typearmor’s runtime component

inserts a check to determine if the target is legal as per the CFI policy. It does

so by retrieving the callee’s label, decoding the type and checking if the result is

compatible with the callsite. The instrumented check does the following:

1. Get the address of the target.

2. Mask the target address to force the callsite to point into the original code

region.

3. Read the target’s memory at target −4 to get the label.

4. Apply xor at the label with the value 0xCCCCCC40. Note that we do not

explicitly check if this part of the label was correct. If the label was incor-

rect, the check for the number of arguments (step 6) fails, since the result

represents an unexpected value.

5. Only for callsites that expect a return value: make sure that the last bit is

0 (i.e., the target function does return a value) which is done by applying

a right rotate by 1 bit on the label. Note that if the callsite targets a void

function, the subsequent check fails, since the bit rotation results in a large

value.

6. Using an unsigned comparison, check if the resulting value is below or

equal to the (hardcoded) number of arguments the callsite is expecting. The

range of possible values for callsites that expect a return value is 0−6 and

for callsites that do not expect a return value, the range is 0 − 13. Note

that the latter range also includes the return type bit.

As an example, consider the case where an indirect callsite which prepares

four arguments and expects a return value tries to target a void-typed function

that expects at least one argument. This function is assigned label 0xCCCCCC43.

At the callsite (after masking the target address, retrieving the label, and xoring

the label with 0xCCCCCC40) a right rotate of 1 bit is performed, because the callsite

expects a return value. This results in the value 0x80000001. Subsequently, the

check for the number of arguments fails, since the resulting value is larger than

4, i.e. the prepared number of arguments at the callsite.

i
i

i
i

i
i

i
i

3.6. MITIGATING ADVANCED CODE-REUSE ATTACKS

TY
PE

A
R

M
O

R

63

3.5.3 CFC Enforcement

We enforce CFC by scrambling unused registers at indirect callsites. Using this

strategy, we essentially enforce a zero percent underestimation rate at the callee,

at the cost of losing the ability to detect ongoing attacks, but instead silently

crashing. Similarly, CFC scrambles the unused return register rax at return in-

structions of void functions so that we eliminate overestimation of non-void call-

sites.

As an example, consider an AT function f that accepts �ve arguments, but

for which Typearmor conservatively concludes that it accepts at least two argu-

ments. Now, consider an indirect callsite cs for which Typearmor assumes that

it sets no more than three arguments. Without enforcing CFC, cs is allowed to

target f . By enabling CFC, Typearmor instruments cs in such a way that the

last three argument registers (i.e., rcx, r8, and r9) are initialized with a random

values at the callsite. The used random values are generated and inserted into

the instrumentation code during load time. Observe that this does not change

the fact that cs is allowed to target f . What it does enforce, however, is that if f

enters a path that uses the 4th and 5th argument registers, the program is likely

to crash as their values are no longer valid. Notice that we use random values

(precomputed at load time) to initialize the argument registers and not �xed ones

(such as zero). This is on purpose to avoid the risk of attacks based on malicious

control �ows that leverage a known state of the argument registers.

3.6 Mitigating Advanced Code-Reuse A�acks

In this section, we discuss how e�ective Typearmor is in stopping advanced

code-reuse attacks (CRAs). Table 3.1 presents a short summary of recently pub-

lished CRAs that rely on control-�ow diversion and how Typearmor addresses

them. Note that all publicly available exploits that are not pure data-only attacks

(like Control Flow Bending [25]) are successfully mitigated.

In the following sections, we discuss advanced CRAs in more detail, COOP

in particular. First, in Section 3.6.1, we analyze a set of server applications for

COOP gadgets while Typearmor is in place and explore if COOP is still possi-

ble. Next, in Section 3.6.2, we walk through practical COOP exploits for Internet
Explorer, Firefox, and Chrome to show how Typearmor stops these attacks. In

Section 3.6.3, we discuss how Typearmor stops Control Jujutsu exploits [49]. In

Section 3.6.4, we discuss further possibilities of COOP exploitation. Finally, we

conclude in Section 3.6.5 with a discussion on pure data-only attacks such as

those presented by Control-Flow Bending [25].

i
i

i
i

i
i

i
i

64 CHAPTER 3. TYPEARMOR

Table 3.1. Typearmor stops existing code-reuse exploits. Since Typearmor specifically targets
x86_64 binaries, the IE 32-bit COOP exploit is out of scope. Note that even without
deploying CFC, Typearmor stops all exploits.

A�ack type Exploit Stopped? Reason

COOP ML-G [120]

IE (32-bit) 7 Out of scope
IE 1 (64-bit) X(CFI) Spurious arguments
IE 2 (64-bit) X(CFI) Spurious arguments
Firefox X(CFI) Spurious arguments

COOP ML-REC [39] Chrome X(CFI) Spurious arguments / illegal void target

Control Jujutsu [49]
h�pd X(CFI) Target function is not address-taken
nginx X(CFI) Illigal void target

3.6.1 E�ectiveness Against COOP

Armed with the knowledge that COOP relies on unused argument registers to

enable data �ow between gadgets, we are interested in how many of those spu-

rious arguments remain when Typearmor is in place. We applied Typearmor’s

static analysis on a large set of server application binaries and compared results

against ground truth obtained by LLVM (more details in Section 3.7). Table 3.2

shows, for each server application, (1) the number of indirect call instructions

(cs), (2) the number of callsites for which our analysis reports the exact number

of prepared arguments as de�ned at the source level (0), and (3) the number of

callsites for which we overestimate the number of prepared arguments by 1, 2,

. . . (+N columns).

From Table 3.2, we conclude that Typearmor is able to determine the exact

number of prepared arguments for the majority of callsites. While this is fairly

promising already, the remaining callsites are potentially dangerous and could

still be used as the initial COOP gadget by an attacker. To investigate this further,

we operated a heuristic search for all possible main-loop (ML-G) and recursive

(REC-G) gadgets for each of the server applications. We depict overestimation

results for these possible gadgets in Table 3.3. Not completely unexpected, we

only found reasonable gadgets in the C++ binaries—MySQL and Node.js.

For the main loop gadgets, Typearmor accurately identi�ed the argument

count for 94% of the callsites in MySQL and for 95% in Node.js. Similarly, for

the recursive gadgets, we identi�ed the exact argument count in 86% (MySQL)

and 96% (Node.js) of the cases. This means, however, that the remaining callsites

may allow data to �ow via the overestimated argument register(s) as identi�ed by

Typearmor: these registers are not explicitly initialized with an argument value

i
i

i
i

i
i

i
i

3.6. MITIGATING ADVANCED CODE-REUSE ATTACKS

TY
PE

A
R

M
O

R

65

Table 3.2. Accuracy of Typearmor compared to the ground truth for di�erent server appli-
cations. The numbers in the columns depict how far o� the analysis is in terms
of number of arguments (i.e., how many additional arguments are erroneously
assumed by Typearmor) for the callsites in the analyzed server applications.

Overestimation

Server #Callsites 0 +1 +2 +3 +4 +5

exim 76 65 6 3 1 0 1
ligh�pd 54 47 0 2 0 0 5
memcached 48 41 3 2 0 2 0
nginx 218 161 35 16 3 1 2
openssh 134 130 4 0 0 0 0
pro�pd 85 68 10 3 2 2 0
pure-�pd 10 8 1 0 1 0 0
vs�pd 4 2 2 0 0 0 0
postgresql 491 392 52 22 9 3 13

mysql 7,532 5,771 789 366 269 125 212
node.js 2,452 2,113 226 37 25 10 41

Table 3.3. Accuracy of Typearmor compared to the ground truth for di�erent server appli-
cations. The values are given in respect to callsites belonging to a specific type of
gadget.

Overestimation

Gadget type Server #Callsites 0 +1 +2 +3 +4 +5

ML-G
mysql 173 163 3 1 1 0 5
node.js 124 118 6 0 0 0 0

REC-G
mysql 278 240 14 11 2 4 7
node.js 57 55 2 0 0 0 0

and may pass data set by one vfgadget to the next. As our automated gadget

identi�cation is not precise, we manually analyzed the remaining gadgets that

might allow implicit data �ow (data �ow via spurious arguments). As noted in

Section 3.2, the registers in question might still be unusable for data �ow due to

destructive updates in between the indirect calls.

For the main loop gadgets in MySQL, we found �ve callsites that were mis-

takenly reported to have an overestimated argument (caused by the fact that

LLVM IR blocks may still get optimized or shu�ed when bitcode is lowered to

machine instructions), leaving only �ve callsites with true overestimation. For

Node.js, overestimation a�ects six callsites. Manually analyzing the reported

gadgets, however, revealed that no implicit data �ow is possible for these call-

i
i

i
i

i
i

i
i

66 CHAPTER 3. TYPEARMOR

B

sub 0x38,%rsp
mov 0x10(%rcx),%rax
movups 0x18(%rcx),%xmm0
mov %rdx,%r8
mov (%rax+8),%r9
lea 0x20(%rsp),%rdx
mov 0x8(%r9),%rcx
movdqu %xmm0,0x20(%rsp)
call *0x30(%r9)
add 0x38,%rsp
retn

sub_1803B8C14

C

mov 0x10(%rcx),%rax
movsxd %edx,%r8
add %r8,%r8
mov (%rax,r8,8),%eax
retn

sub_180AFDE10

A
mov %rbx,0x8(%rsp)
mov %rsi,0x10(%rsp)
push rdi
sub 0x20,%rsp
mov 0x50(%rcx),%rsi
mov 0x4c(%rcx),%edi
mov %rcx,%rbx

lea 0x48(%rbx),%rcx
call 0x180001f20
mov %rbx,%rcx
mov 0x30(%rsp),%rbx
mov 0x38(%rsp),%rsi
add %0x20,%rsp
pop %rdi
jmp 0x1872ea40

mov (%rsi),%rcx
mov (%rcx),%rax
call *0x10(%rax)
add %0x8,%rsi
dec %edi
jmp %0x18072ea09

test %edi,%edi
jg 0x180de8a5c

False True

True

Fall through

sub_18072E9F0

C IE COOP Chain Gadget

B IE COOP Chain Gadget

A IE COOP Loop Gadget

Figure 3.7. Gadgets used in COOP’s 64-bit IE exploit.

sites. Results for recursive gadgets look equally promising: overestimation of

prepared argument count occurred for 38 callsites in MySQL and two in Node.js.

Manual analysis revealed that four gadgets were wrongly identi�ed as REC-Gs,

13 could not set up an implicit data �ow due to destructive updates, and for 23,

CFC prevents data �ow.

3.6.2 Stopping COOP Exploits in Practice

In the following sections, we analyze the published exploits for Internet Explorer
(IE), Firefox [120], and Chrome [39] and show how Typearmor stops these at-

tacks.

Exploit on 64-bit IE The original COOP paper presents two exploits against

64-bit IE, both using the main loop gadget ML-G shown in Figure 3.7 (A). After

initialization, the function sub_18072E9F0 enters a loop and remains looping

until edi reaches zero. The loop itself (1) loads a (counterfeit) object by setting

the �rst argument (the this pointer): mov (%rsi),rcx, (2) prepares and calls

a virtual function: call *0x10(%rax), (3) increases rsi to point to the next

virtual function: add $0x8, %rsi, and (4) decreases the loop counter: dec edi.

4
Note that the Microsoft x64 calling convention is di�erent from the System V AMD64 ABI: only the

�rst four arguments are passed via registers, namely: rcx, rdx, r8, r9.

i
i

i
i

i
i

i
i

3.6. MITIGATING ADVANCED CODE-REUSE ATTACKS

TY
PE

A
R

M
O

R

67

By controlling memory near (%rsi), the exploit can chain virtual functions and

launch the attack
4
.

Let us now walk through Typearmor’s callsite analysis. It starts at the basic

block that contains the indirect call instruction and concludes that only the �rst

argument (rcx) is set in this block. Since there is no conclusive result for the

remaining argument registers yet, it moves to the previous block which contains

the loop condition (test %edi,%edi). As this block does not touch any argument

register, it continues by searching for incoming edges to this block. The analysis

�nds two blocks: the entry block of the function, and the loop block that directly

follows the indirect call instruction (ending with jmp %0x18072ae09). By fol-

lowing the second edge, we again see no write operations on argument registers,

and the analysis must continue by searching for incoming edges to add %0x8,

%rsi. It is at this moment that Typearmor hits the call *0x10(%rax) instruc-

tion and can stop its analysis: the call instruction forces the compiler to reset any

argument register if it is required by the program later on. So far, Typearmor

observed only one argument register to be set and concludes that this callsite

sets at most one argument.

Typearmor thus ensures that the indirect callsite in the loop gadget may tar-

get only those functions that accept zero or one argument. Looking at the chain

of virtual functions, however, we �nd several vfgadgets that use a minimum of

two arguments. One such function is sub_1803B8C14, illustrated in Figure 3.7 (B).

The �rst two argument registers rcx (via mov 0x10(%rcx),%rax), and rdx (via

mov %rdx, %r8) are read-before-write, and Typearmor thus concludes that this

is a function that expects at least two arguments. Typearmor’s many-to-many

map now enforces that the indirect callsite in the loop gadget (that prepares at
most one argument) is not allowed to call sub_1803B8C14 (which expects at least
two arguments). Typearmor thus successfully stops the exploit.

The second COOP exploit against IE relies on the same ML-G, but deploys

a di�erent chain of virtual functions. Similar to the �rst exploit, it uses a vir-

tual function that expects at least two arguments (shown in Figure 3.7 (C)—mov

0x10(%rcx),%rax) and movsxd %edx,%r8. Therefore, Typearmor also stops this

exploit.

Exploit on 64-bit Firefox We examined COOP’s Firefox exploit and found that

the ML-G used for the Firefox attack prepares only one argument (the this

pointer, in rdi). Similar to what we observed for the IE exploits, this is cor-

rectly inferred by Typearmor’s callsite analysis. Moreover, the gadget chain re-

lies on implicit data �ows through argument registers and consists of functions

i
i

i
i

i
i

i
i

68 CHAPTER 3. TYPEARMOR

that expect at least two arguments, among others. This means that Typearmor

successfully stops the Firefox COOP exploit.

Exploit on Chrome In contrast to the ML-G gadgets used by the previous ex-

ploits, the improved COOP attack against Google Chrome alternates between

two recursive gadgets (REC-G) to chain virtual functions. By analyzing the gad-

get chain, we �nd that three consecutive gadgets use rsi to pass data. Look-

ing at the SkComposeShader::contextSize() REC-G, however, we �nd that

Typearmor identi�es that its second indirect call (used to direct control �ow to

the second REC-G, blink::XMLHttpRequest::AddEventListener()), prepares

only one argument. This means that Typearmor’s CFC enforcement scrambles

data stored in rsi and thus breaks the exploit.

Additionally, the �rst indirect callsite in SkComposeShader::contextSize()

is non-void, meaning that it can only call functions that set rax. One of the

chained vfgadgets, TtsControllerImpl::SetPlatformImpl(), however, is of

type void and never writes to rax. Thus, Typearmor’s CFI mechanism stops

this attack as well.

3.6.3 Control Jujutsu

The two Control Jujutsu exploits [49] combine data and control-�ow diversion

attacks: the authors assume a (restricted) memory write to prepare a certain state,

followed by overwriting a function pointer. The new function pointer stills tar-

gets a function entry, but one that can use the prepared state to give the attacker

control over the program [49]. Inspecting the attacks with Typearmor in mind,

we can infer that we stop both attacks: (1) the attack against nginx diverts a non-

void callsite in ngx_output_chain to target a void function ngx_execute_proc,

which Typearmor correctly detected as such; (2) the attack against Apache h�pd
diverts a callsite in ap_run_dirwalk_stat to invoke a target function that does

not have its address taken (piped_log_spawn), whichTypearmor does not allow.

Although the authors argue that in this scenario the attack can still succeed by

calling ap_open_piped_log_ex instead (which wraps piped_log_spawn), this is

not properly evaluated. By looking at the source code, it is likely that this extra

level of indirection corrupts the attacker’s prepared state.

3.6.4 COOP Extensions

While we demonstrated in Section 3.6.2 how Typearmor stops all published

COOP exploits, we now discuss the feasibility of advanced, previously unex-

plored techniques that could extend COOP.

i
i

i
i

i
i

i
i

3.6. MITIGATING ADVANCED CODE-REUSE ATTACKS

TY
PE

A
R

M
O

R

69

Data Flow in COOP The original COOP paper presents multiple approaches

to pass arguments between vfgadgets, distributed among three classes: (1) data

�ow using unused argument registers, (2) data �ow using overlapping counter-

feit object �elds or global variables, and (3) data �ow by relying on arguments

actually passed to the callee. Note that the �rst class speci�cally targets x86_64,

as it mostly uses registers to pass arguments to a function. We refer to this class

as implicit data �ow and for the remaining two as explicit data �ow.

As the published COOP exploits demonstrate, implicit data �ow is often key

to successful exploitation: in many cases, ML-Gs and REC-Gs prepare only few

arguments for the callsite, leaving the attacker with many registers she can use

for data �ow. Having more registers at her disposal, in turn, increases the proba-

bility of �nding vfgadgets that implement useful functionality on these registers.

One has to make sure, however, that the main-loop (or recursive) gadget does

not overwrite said registers in between virtual function calls.

Explicit data �ow, on the other hand, is characterized by enabling data �ow

using actual arguments to the vfgadget. Most notably, this also includes the �rst

argument (which, for C++, depicts the object pointer). By overlapping multiple

objects of di�erent classes, two vfgadgets may operate on the same (overlapped)

object �eld. This idea can be extended to other arguments as well, which is what

COOP uses to enable data �ow for their 32-bit IE exploit on Windows x86. In

this approach, it uses an initial gadget that always passes the (same) �eld of the

initial counterfeit object to the various vfgadgets. This �eld can then be used

to pass arguments between gadgets and requires vfgadgets to dereference the

corresponding argument and read from or write to it. Such �eld is de�ned as

argument �eld [120].

Impact of Typearmor on Data Flow Typearmor e�ectively prevents implicit

data �ow. In Section 3.6.1, we show that static analysis is accurate enough to

precisely determine the correct argument count for indirect callsites in many

cases. Consequently, CFC scrambles all argument registers that are known to be

unused. This prevents implicit data �ow by design, both for ML-Gs and REC-Gs.

If Typearmor fails to determine the exact argument count a callsite prepares,

an attacker might be able to use this discrepancy to enable data �ow. Note, how-

ever, that compared to the original COOP setting, she is still severely constrained.

First, she does not have as many registers to choose from, which lowers the proba-

bility of �nding vfgadgets with the desired semantics. Second, CFI is still in place,

which signi�cantly reduces the target set. In fact, our manual analysis shows that

even for those cases, Typearmor still makes implicit data �ow impossible.

i
i

i
i

i
i

i
i

70 CHAPTER 3. TYPEARMOR

Looking at explicit data �ows, we distinguish two cases. First, data �ows

using overlapping object �elds, for which we refer to the original COOP paper:

it already concludes that these scenarios are di�cult to apply in practice. The

second case enables a di�erent class of COOP data-�ow semantics, which relies

on the presence of an argument �eld. As with the �rst scenario, however, this is

hard to realize in practice since not passing the particular argument may heavily

interfere with the program’s semantics.

Advanced argument-passing techniques can be tackled by source-level CFI

solutions: they have access to type information of the callsite, and can thus en-

force a match to types of the callee. In particular, such information can reduce the

number of gadgets applicable for data �ow via argument �elds (object �elds that

are passed as parameter to a vfgadget by the ML-G). If an analysis determines

an argument �eld to be a pointer, the ML-G’s callsite can only target vfgadgets

that expect a pointer for the corresponding argument and vice versa. We antic-

ipate that this argument type distinction is also possible at the binary level and

consider it as something to explore in future work.

Although we con�rm that advanced COOP exploitation is still possible in

theory, we stress that a signi�cant reduction of the attack surface at the binary

level is possible. In fact, with Typearmor in place, only the really elaborate,

but inherently constrained, options for argument passing survive for building

working COOP exploits.

3.6.5 Pure Data-Only A�acks

The Control-Flow Bending (CFB) paper evaluates the general e�ectiveness of

ideal CFI solutions and evidences their limitations against sophisticated CFG-

aware attacks [25]. The authors show that CFB attacks against CFI solutions

that are complemented by a shadow stack are more di�cult, but sometimes still

possible.

As any other CFI solution, Typearmor cannot stop pure data-only attacks.

However, attacks that use an arbitrary memory write to overwrite a function

pointer can still potentially be stopped: if the attacker overwrites a pointer to

point to a function that expects more arguments than the original target, or if

the new target assumes that certain callsite arguments that have been scrambled

by CFC contain a speci�c value, the attack will be stopped.

Through personal communication, the CFB authors shared their exploit notes

for the presented Apache and Wireshark attacks; two attacks that work even

in the presence of a runtime shadow stack and ultimately overwrite a function

pointer at some point during the exploit. After analyzing the exploits in depth,

i
i

i
i

i
i

i
i

3.7. PERFORMANCE

TY
PE

A
R

M
O

R

71

we conclude that these truly are pure data-only attacks, and cannot be stopped by

Typearmor. It is worth mentioning that even source-level CFI solutions cannot

stop these two attacks.

3.7 Performance

Typearmor is implemented on Linux for x86_64. The callee and callsite analysis

component, outlined in Section 3.4, is implemented in 5,532 lines of C++ code

and depends on the Dyninst v8.2.1 binary analysis framework to disassemble

machine code [11]. The runtime component, outlined in Section 3.5, also relies

on Dyninst to perform binary instrumentation and consists of 743 lines of code.

The prototype supports generic 64-bit ELF binaries as long as they do not emit

self-modifying code.

The evaluation testbed is a system equipped with an Intel i5-2400 CPU at

3.10GHz and 8GB of RAM. We ran our tests on Ubuntu 14.04 x86_64 running ker-

nel 3.13. We focus our performance evaluation on popular Linux server applica-

tions, given that (1) they are widely adopted in the research community for eval-

uation purposes, (2) they are popular exploitation targets, and (3) they naturally

contain a relevant number of indirect callsites that can greatly bene�t from the

protection o�ered by Typearmor. Speci�cally, we evaluated Typearmor with

three FTP servers (namely, vs�pd v1.1.0, ProFTPD v1.3.3, and Pure-FTPd v1.0.36),

two web servers (nginx v0.8.54 and ligh�pd v1.4.28), an SSH server (the OpenSSH
Daemon v3.5), an email server (Exim v4.69), two SQL servers (MySQL v5.1.65

and PostgreSQL v9.0.10), a general-purpose distributed memory caching system

(Memcached v1.4.20), and a cross-platform runtime environment for server-side

web applications (Node.js 0.12.5, statically compiled with Google’s v8 JavaScript

engine). Finally, we considered all C and C++ SPEC CPU2006 benchmarks for

completeness and direct comparison with prior work.

To benchmark the web servers and Node.js (which we con�gure to serve

a JavaScript page that mimics default web-server behavior), we con�gured the

Apache benchmark [239] to issue 250,000 requests with 10 concurrent connec-

tions and 10 requests per connection. To benchmark the FTP servers, we con�g-

ured the pyftpbench benchmark [242] to open 100 connections and request 100 1

KB-sized �les per connection. To benchmark Memcached, we used the memslap

benchmark [238]. To benchmark the SQL servers, we con�gured the Sysbench

OLTP benchmark [240] to issue 10,000 transactions using a read-write workload.

Finally, to benchmark OpenSSH and Exim, we used the OpenSSH test suite [243]

and a homegrown script which repeatedly launches the sendemail program [245],

i
i

i
i

i
i

i
i

72 CHAPTER 3. TYPEARMOR

Table 3.4. Runtime performance overhead for server applications. The CFI column depicts the
overhead of Typearmor’s CFI implementation (checking callee labels before each
indirect call instruction). +CFC depicts the slowdown of Typearmor’s complete
configuration.

Overhead

Server #Indirect calls per second CFI +CFC

exim 4,574 1.068 1.067
ligh�pd 1,425,099 1.116 1.174
memcached 72,519 1.014 1.017
nginx 5,084,715 1.132 1.155
openssh 78 1.021 1.013
pro�pd 542,443 1.007 1.002
pure-�pd 17 1.020 1.013
vs�pd 24,024 1.025 1.051
postgresql 18,024,485 1.160 1.205

mysql 19,693,937 1.239 1.222
node.js 1,965,955 1.061 1.055

respectively. We con�gured all applications and benchmarks with their default

settings. We ran all the experiments 11 times (checking that the CPUs were fully

loaded throughout the tests) and report the median (with marginal standard de-

viation observed across runs).

To evaluate the impact of Typearmor’s instrumentation on runtime perfor-

mance, we measured the time to complete the execution of the benchmarks and

compared against the baseline. The baseline refers to the original version of the

benchmark with no binary instrumentation applied. Table 3.4 details the normal-

ized runtime for two con�gurations. The CFI con�guration refers to Typearmor

solely enforcing forward-edge CFI as outlined in Section 3.5.2. As shown in the ta-

ble, this con�guration introduces a noticeable performance impact (7.6% on aver-

age, geometric mean), owing to about half of the applications executing millions

of indirect callsites per second. The overhead is comparable to Typearmor’s

complete (and default) con�guration (CFI+CFC), which accounts for Typearmor

also clearing unused argument registers at each callsite (8.6% on average, geo-

metric mean). On applications that execute less than a million indirect callsites

per second, Typearmor has a marginal performance impact.

To obtain standard and comparable performance results across Typearmor’s

con�gurations, we measured the time to complete the SPEC CPU2006 bench-

marks and compared it against the baseline. Again, the baseline refers to the

original version of the SPEC2006 benchmarks with no binary instrumentation

i
i

i
i

i
i

i
i

3.8. SECURITY ANALYSIS

TY
PE

A
R

M
O

R

73

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

400.perlbench

401.bzip2

403.gcc

429.mcf

433.milc

445.gobmk

456.hmmer

458.sjeng

462.libquantum

464.h264ref

470.lbm

482.sphinx3

444.namd

447.dealII

450.soplex

453.povray

471.omnetpp

473.astar

483.xalancbmk

geomean

N
or

m
al

iz
ed

ru
nt

im
e

CFI
+CFC

Figure 3.8. Benchmark runtime normalized against the baseline for SPEC CPU2006.

applied. We present results in Figure 3.8 and con�rm the general behavior ob-

served for the server applications, with an average performance overhead of only

2.4% for Typearmor in a CFI-only con�guration and of 2.5% for Typearmor in

the default (CFI+CFC) con�guration (geometric mean).

Overall, Typearmor imposes a relatively low runtime performance impact

on all the test programs considered. This con�rms that our lightweight instru-

mentation is successful in producing a runtime overhead that is comparable to,

or even faster than existing binary rewriting-based CFI solutions [157].

3.8 Security Analysis

Common evaluation metrics used to assess the e�ectiveness of defense mecha-

nisms have been questioned by the community [25]. In this paper, we acknowl-

edge that additional research is required for converging on a more e�cient se-

curity evaluation system. However, for completeness and comparability with

similar works, in this section we evaluate Typearmor using security metrics

proposed by other systems.

Table 3.5 presents accuracy results for (1) callsite and (2) callee analysis. To

validate Typearmor’s static analysis results—ensuring no underestimation oc-

curs at the callsite and no overestimation is observed at the callee—and to com-

pute the accuracy in detecting return usage and exact number of prepared/con-

sumed arguments, we compared Typearmor’s results against the ground truth

generated from source code. For this purpose, we (1) relied on the LLVM frame-

i
i

i
i

i
i

i
i

74 CHAPTER 3. TYPEARMOR

Table 3.5. Static analysis results for recovering callsite signatures and callee prototypes. The
Callsites and Callees groups report statistics on (1) how many callsites/callees
were found, (2) in how many cases our static analysis correctly identified the number
of set/used arguments, and (3) the number of correctly detected non-void callsites
and void callees. For the la�er, the percentage displayed inside parentheses shows
the correctness ratio. For example, for ligh�pd 84% of the callsites that expect a
return value and 20% of the void functions were correctly identified as such.

Callsites Callees

Server # args non-void (%) # args void (%)

exim 76 65 44 (67.69) 615 495 32 (17.98)
ligh�pd 54 47 21 (84.00) 353 311 19 (20.00)
memcached 48 41 15 (100.00) 236 210 11 (7.91)
nginx 218 161 155 (90.64) 1,111 869 57 (22.62)
openssh 134 130 67 (100.00) 715 625 48 (13.19)
pro�pd 85 68 62 (93.94) 1,188 1,045 69 (26.74)
pure-�pd 10 8 3 (50.00) 201 169 0 (0.00)
vs�pd 4 2 1 (100.00) 445 371 29 (12.03)
postgresql 491 392 328 (87.23) 9,312 8,054 494 (15.13)

mysql 7,532 5,771 4,783 (70.97) 9,961 6,977 1,277 (36.60)
node.js 2,452 2,113 1,199 (91.39) 34,703 28,698 3,444 (22.26)

work to compile source code into an intermediate representation (LLVM IR) at

di�erent optimization levels, (2) extracted ground truth numbers (number of ar-

guments prepared for each indirect callsite, number of arguments consumed for

each function, and the list of callsites/callees that expect or set a return value),

and (3) lowered LLVM bitcode to machine code (using the same optimization lev-

els) on which we ran Typearmor’s static analysis. Table 3.5 reports results for

-O2, but we observed similar results at other optimization levels. For this exper-

iment, we excluded libraries to ensure a fair comparison across server applica-

tions. In addition, we included callee analysis results (second group in Table 3.5)

for all functions in the program.

Table 3.5 shows that the static analysis results are very accurate in identifying

the exact number of used arguments (ranging from 50% to 97% for callsites and

from 70% to 89% for callees). The forward static analysis results are slightly better

than those obtained with the backward static analysis, given that the stop condi-

tion for the callee analysis is stronger than the one used for callsites. Nonetheless,

results are encouraging, given that Typearmor can, overall, compute the exact

number of source-level arguments in more than 75% of the cases, while operat-

ing entirely at the binary level and in a conservative fashion. Similarly, with a

success rate of 84% on average, results for detecting non-void callsites are also

i
i

i
i

i
i

i
i

3.8. SECURITY ANALYSIS

TY
PE

A
R

M
O

R

75

Table 3.6. Median number of targets for an indirect callsite across di�erent CFI policies, both
for Binary-level policies (address-taken and Typearmor) and for Source-based
defenses (address-taken and IFCC [130]).

Binary Source

Server AT CFI +CFC AT IFCC

exim 615 41 40 67 3
ligh�pd 353 50 47 59 6
memcached 236 14 14 14 1
nginx 1,111 352 254 518 25
openssh 715 32 6 90 4
pro�pd 1,188 390 376 402 3
pure-�pd 201 6 4 14 0
vs�pd 445 12 12 15 1
postgresql 9,312 2,357 2,304 2,509 12

mysql 9,961 4,158 3,698 6,097 150
node.js 34,703 4,804 4,714 7,527 341

accurate. On the other hand, detecting void functions is much harder: we de-

tect less than 20% of the actual void callees. This is caused by rax being used as

scratch register in many cases, resulting in an underestimation of the number of

void functions.

The Binary group in Table 3.6 displays the median number of legal indi-

rect callsite targets as enforced by existing (binary-level) address-taken-based

solutions and Typearmor’s policies. It re�ects the static analysis results on the

number of legal targets, measuring the strength of CFI and CFC invariants. The

AT column reports results for existing state-of-the-art binary-level CFI solutions

that allow indirect callsites to target any address-taken function [105, 157]. This

results in a CFI solution allowing indirect callsites to target all valid function en-

try points. The CFI and +CFC columns report results for Typearmor deployed

in a CFI-only con�guration and in a full CFI+CFC con�guration, respectively.

Table 3.6 shows that on average, Typearmor is capable of reducing the num-

ber of legal targets by roughly two orders of magnitude (91% reduction on aver-

age for CFI+CFC) compared to the conservative binary-level address-taken strat-

egy (AT) adopted in prior solutions. The results also demonstrate the e�ective-

ness of CFC, which can further reduce the targets allowed by CFI alone (110 vs.

141 targets on average).

The Source group in Table 3.6 allows us to compare Typearmor with source-

level techniques to assess the strength of the of constraints imposed on indirect

callsites. We compared Typearmor with an LLVM-based tool for address-taken

i
i

i
i

i
i

i
i

76 CHAPTER 3. TYPEARMOR

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

R
at

io
of

Ta
rg

et
s

Ratio of Indirect Callsites

mysql CFI
mysql CFC

openssh CFI
openssh CFC

postgresql CFI
postgresql CFC

Figure 3.9. CDF of legal indirect callsite targets enforced by Typearmor’s CFI and CFC
policies.

(AT) analysis, and state-of-the-art source-level CFI defenses, i.e., IFCC [130]. As

expected, IFCC signi�cantly reduces the available targets of indirect callsites

compared toTypearmor. However, note that for certain programs (e.g., OpenSSH)

Typearmor performs equally well, although applied at the binary level, and, in

all cases, Typearmor yields the same or better results than source-based address-

taken analysis.

For a more accurate view of the invariants enforced by Typearmor, we report

a CDF in Figure 3.9 of legal callsite targets. For clarity, we limit the CDF to CFI

and CFC with applications that (1) yield minimal target reduction compared to

source-level AT results (PostgreSQL, blue), (2) contain many indirect callsites

and AT functions (MySQL, yellow), and (3) yield high reduction (OpenSSH, red).

Based on the CDF of Figure 3.9, we observe that CFC results for each pro-

gram follow the same trend as CFI. This is inherent to the deployment of the

callsite-oriented invariants, with the number of indirect callsites being constant.

We observe that results for PostgreSQL, due to the unusual internal structure of

the program and the weaker quality of the resulting invariants, are more conser-

vative than other cases, with over 90% of the indirect callsites allowing 80% or

more targets. This di�erence is due to the distribution of the argument count

for AT functions: for PostgreSQL, over 85% of the AT functions are detected as

consuming at least 0 or 1 argument. This means that as soon as Typearmor’s

backward analysis �nds that a callsite prepares an additional argument, it must

i
i

i
i

i
i

i
i

3.8. SECURITY ANALYSIS

TY
PE

A
R

M
O

R

77

0

1,000

2,000

3.000

4,000

5,000

6,000

7,000

8,000

0’ 0 1’ 1 2’ 2 3’ 3 4’ 4 5’ 5 6’ 6

0

1,000

2,000

3.000

4,000

5,000

6,000

7,000

8,000

C
al

ls
it

es

C
al

le
es

Buckets

Callsites Callees

Figure 3.10. Distribution of CFC buckets for MySQL. A tick (’) denotes a bucket containing
callsites/callees that expect and set return values.

allow all those 85% as a possible target. To make this more concrete, Typear-

mor concludes that for OpenSSH, only 26 (out of 90) AT functions accept 0 or

1 argument. Encouragingly, other programs exhibit a regular internal structure,

resulting in much stronger type-based invariants. For example, we �nd that re-

sults for OpenSSH are impressive: for 90% of all indirect callsites, CFC still yields

an almost 50% reduction of the legal targets. Moreover, for 35% of the callsites,

Typearmor allows only 7% of all AT functions as valid target.

To further analyze the distribution of possible callees among callsites, Fig-

ure 3.10 depicts a histogram of the di�erent buckets that are enforced by Ty-

pearmor’s CFC policy. For each bucket, it shows the number of callees (red) and

callsites (yellow) that fall into it. Without return-use information, the System V

ABI enables six buckets: callees that take at least 0 arguments, 0 to 1 arguments,

0, 1, or 2 arguments, . . . , callees that take any number of arguments. By adding

return use information (denoted with a tick ’ in Figure 3.10), the number of buck-

ets is doubled. As an example, consider bucket 3. This bucket contains the callees

that expect 0, 1, 2, or 3 arguments, but not those that expect at least 4 arguments

or more. On the other hand, it contains callsites that prepare at most 6, 5, 4, or

3, arguments, but not 2 or less. Another example is bucket 3’, which consists of

the same set of only callsites and callees that set and expect a return value.

Figure 3.10 illustrates the intuitive e�ectiveness of Typearmor: there is a

limited set of callsites (around 500 for MySQL) that are allowed to target any AT

i
i

i
i

i
i

i
i

78 CHAPTER 3. TYPEARMOR

function (over 6000), while there are many callsites (7500) that can target only

a limited amount of callees (less than 4000). Note that since MySQL is a C++

program, and thus rdi is often used to hold the this pointer, we see almost zero

callees in the �rst two buckets.

Overall, we conclude that Typearmor’s CFI and CFC invariants yield a sig-

ni�cant reduction in the number of legal targets at indirect callsites.

3.9 Related Work

Ever since the original CFI proposal by Abadi et al. [2] and the rise of advanced

code-reuse attacks [25, 26, 43, 57, 58, 120, 124], there have been several CFI tech-

niques proposed in the literature, targeting both source and binary compatibility

and with di�erent strength of invariants. In this section, we brie�y review state-

of-the-art CFI solutions vis-à-vis Typearmor.

Binary-level CFI. Realizing binary-level CFI in practice is hard, since comput-

ing the CFG of a program is an undecidable problem and instrumentation usually

incurs overheads. Therefore, there has been research for CFI approximations, re-

alized through coarse-grained CFI [154, 157]. However, these approximations

have been demonstrated vulnerable [57]. Lockdown [105] and CFCI [158] at-

tempt to deploy �ne-grained CFI schemes, while VTint [153], vfGuard [110], and

T-VIP [51] focus on protecting just VTables at the binary level. However, it was re-

cently demonstrated that even �ne-grained schemes can be bypassed [25, 49] and

VTable protections without access to C++ semantics are infeasible [120]. PathAr-

mor shows how recent hardware features can be used to deploy context-sensitive

CFI with low overhead [131], but, in absence of forward-edge context-sensitive

invariants, COOP attacks are still possible. In contrast to these solutions, Typear-

mor enforces binary-level invariants based on the number of function arguments,

targeting exclusive protection against all these advanced exploitation techniques

that bypass �ne-grained CFI schemes and VTable protections, at the binary level.

Source-level CFI. Source-level solutions, such as IFCC/VTV [130], SAFEDIS-

PATCH [66], CPI [83], and ShrinkWrap [61] can realize CFI with increased ac-

curacy. In this respect, Typearmor is an attempt to approximate source-level

accuracy at the binary level. Although Typearmor is less accurate than such

source-level solutions, we argue in this paper that, in the context of sophisti-

cated attacks such as advanced COOP extensions, it is questionable whether ad-

ditional accuracy that is provided by source-level solutions is required. For most

advanced techniques, such as all publicly released COOP exploits, invariants as

enforced by Typearmor may be su�cient and e�ective in practice.

i
i

i
i

i
i

i
i

3.10. CONCLUSION

TY
PE

A
R

M
O

R

79

3.10 Conclusion

In this paper, we presented Typearmor, a new detection and containment so-

lution against advanced code-reuse attacks. Typearmor relies on binary-level

static analysis to derive both target-oriented and callsite-oriented control-�ow in-

variants and e�ciently apply security policies at runtime. In particular, Typear-

mor relies on target-oriented invariants to enumerate legal callsite targets and

detect attacks that transfer control to illegal targets (akin to traditional CFI, but

with much stronger binary-level invariants). In addition, Typearmor relies on

callsite-oriented invariants to invalidate illegal function arguments at each call-

site and contain attacks that rely on type-unsafe function argument reuse, using

a protection technique dubbed Control-Flow Containment (CFC). CFC further

improves the quality of our target-oriented invariants, resulting in the strictest

binary-level CFI solution to date.

The COOP papers questions whether it is even possible to mitigate sophis-

ticated forward-edge attacks using binary-level CFI solutions. Typearmor con-

trasts these claims with concrete evidence that constructing a strict binary-level

CFI solution to counter the most advanced code-reuse attacks in the literature

is possible and realistic in practice. To substantiate our claims, we demonstrated

that Typearmor stops all published COOP exploits.

Shared Authorship

I share �rst authorship on Typearmor with Enes Göktaş. Enes is the main author

of the runtime component, while my focus was on the static analysis implemen-

tation and overall evaluation.

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

V
PS

4 VPS: Excavate
High-Level C++
Constructs from
Low-Level Binaries to
Protect Dynamic
Dispatching

Low-level languages such as C++ are prone to both temporal and spatial memory

corruption vulnerabilities. Features like polymorphism that make C++ suitable

for writing complex software increase the binary-level attack surface because

they rely on function pointers in a so called virtual function table (vtable) that

attackers can potentially hijack. In practice, vtable hijacking is one of the most

important attack techniques.

In this chapter, we present VTable Pointer Separation (vps), a binary-level de-

fense against vtable hijacking in C++ applications. vps achieves accurate pro-

tection by restricting virtual callsites to validly created objects. More speci�-

cally, vps ensures that virtual callsites can only use objects created at valid object

construction sites. vps prevents wrongly identi�ed virtual callsites from break-

ing the binary, an issue most previous work do not consider. We evaluate the

prototype implementation of vps on a diverse set of large applications (MySQL

server, Node.js, SPEC CPU2017 and CPU2006), showing that our approach pro-

tects on average 97.7% of all virtual callsites in SPEC CPU2006 and 97.4% in SPEC

CPU2017 (all C++ benchmarks), with a moderate performance overhead of 9% and

11% geometric mean, respectively. Furthermore, our evaluation reveals 86 false

negatives in VTV, a source-based defense part of GCC.

81

i
i

i
i

i
i

i
i

82 CHAPTER 4. VPS

4.1 Introduction

Despite over three decades of research on software security, memory corruption

vulnerabilities are still a major threat to the integrity of today’s software [225].

Software implemented in low-level languages such as C and C++ is particularly

vulnerable to such attacks, and the sophistication of attacks is rising (e.g., [25,

34, 57, 120]). In practice, especially C++ is often the programming language of

choice for complex software because it allows developers to structure software

by encapsulating data and functionality in classes, simplifying the development

process. Unfortunately, the binary-level implementations of C++ features like

polymorphism and (multiple) inheritance are often vulnerable to control �ow

hijacking attacks, most notably vtable hijacking.

Vtable hijacking abuses common binary-level implementations of C++ virtual

methods where every object with virtual methods contains a pointer to a virtual
function table (vtable) that stores the addresses of all the class’s virtual functions.

To call a virtual function, the compiler inserts an indirect call through the corre-

sponding vtable entry (a virtual callsite). Using temporal or spatial memory cor-

ruption vulnerabilities such as arbitrary write primitives or use-after-free bugs,

attackers can overwrite the vtable pointer so that subsequent virtual calls use

addresses in an attacker-controlled alternative vtable, thereby hijacking the con-

trol �ow. In practice, vtable hijacking is a common exploitation technique used

in exploits that target complex applications written in C++ such as web browser

and server applications [237].

Control-Flow Integrity (CFI) solutions [2, 16, 97, 107, 130] protect indirect

calls by verifying that control �ow is consistent with a Control Flow Graph (CFG)

derived through static analysis. However, most generic CFI solutions do not take

C++ semantics into account and leave the attacker with enough wiggle room to

build an exploit [57, 120]. Consequently, approaches that speci�cally protect

virtual callsites in C++ applications were developed. If source code is available,

compiler-level defenses are preferable because they bene�t from the rich class

hierarchy information available at the source-level [20, 23, 130, 152]. In contrast,

binary-level defenses that can protect already compiled, proprietary binaries [46,

51, 103, 110, 153] cannot take advantage of source-level information. As a result,

the accuracy of their (automated) analysis is of uttermost importance since not

only their security guarantees hinges on it, but also if their instrumentation is

prone to breaking the application.

In this chapter, we present VTable Pointer Separation (vps), a binary-level de-

fense against vtable hijacking attacks. Unlike previous binary-only approaches

i
i

i
i

i
i

i
i

4.1. INTRODUCTION

V
PS

83

that restrict the set of vtables permitted for each virtual callsite, we ensure the

vtable pointer was not modi�ed since the object was created. Moreover, we ob-

serve that the vtable pointer in a legitimate live object never changes, allowing

vps to avoid virtual pointer hijacking by enforcing this rule. While CFIXX [23]

performs enforcement in a similar way, it only works on source code and lacks

the binary analysis that vps introduces. Our approach is particularly suitable

for binaries because, unlike other binary-level solutions, we avoid the inherent

inaccuracy in binary-level CFG and class hierarchy reconstruction. Because vps

allows only the initial virtual pointer(s) of the object, we reduce the attack sur-

face even compared to hypothetical implementations of prior approaches that

statically �nd the set of possible vcall targets with perfect accuracy. In addition,

our method prevents use-after-free attacks.

Given that binary-level static analysis is challenging and unsound in prac-

tice, we also propose a way to deal with potential false positive results in the

virtual callsite identi�cation. We carefully over-approximate the set of callsites

and implement an e�cient slow path to handle possible false positives at run-

time, while allowing fast checks for previously veri�ed callsites. This approach

allows us to prevent false positives from breaking the application due to the se-

curity checks at virtual callsites like they do in existing work [46, 51, 110, 153].

Additionally, we note that, while existing work [68, 70, 71, 103] only considers

directly referenced vtables, the compiler can also generate code that references

vtables indirectly, i.e., through the Global O�set Table (GOT). As a result, vps is

able to �nd all code locations that instantiate objects by writing the vtable into

it. This is an important observation since misses open our approach to breaking

the application as well.

We built a prototype of vps and show that our analysis is su�ciently precise

to handle complex, real-world C++ applications such as MySQL server, Node.js,

and all C++ applications contained in the SPEC CPU2006 and CPU2017 bench-

mark suites. Our results indicate that we can on average correctly identify 97.7%

and 97.4% of virtual callsites in SPEC CPU2006 and SPEC CPU2017, with a high

precision of 95.6% and 91.1%, respectively. Compared to previous work on binary-

level defenses against vtable hijacking such as Marx [103], our analysis identi�es

5.9% more virtual callsites in SPEC CPU2006 and 26.5% in SPEC CPU2017 and

thus o�ers improved protection. Interestingly, our evaluation revealed 86 virtual

callsites that are not protected by the source code based approach VTV which is

part of GCC [130]. A further investigation with the help of the VTV maintainer

shows that these misses are due to a conceptual problem in VTV which requires

non-trivial engineering to �x. vps induces a moderate performance overhead:

i
i

i
i

i
i

i
i

84 CHAPTER 4. VPS

we measured a geometric mean overhead of 9% for all C++ applications in SPEC

CPU2006 and 11% for SPEC CPU2017.

Contributions. In summary, we provide the following contributions in this

chapter:

• We present a binary-only defense against vtable hijacking attacks called

vps that sidesteps the imprecision problems of other work on this topic.

The key insight is that vtable pointers should never change once an object

is created. We provide a detailed comparison against existing binary-only

approaches in Section 4.3.1.

• We develop an instrumentation approach that is capable of handling false

positive identi�cation of C++ indirect callsites which can break the appli-

cation and are ignored by most existing work. In addition, we investigate

and handle indirect vtable references, which were also not considered in

prior work.

• Our evaluation shows that we can on average correctly identify 97.7% and

97.4% of the existing virtual callsites in SPEC CPU2006 and CPU2017, with

a high precision of 95.6% and 91.1%, respectively. In addition, our evalu-

ation uncovered a conceptual problem in VTV, a well-known source-level

defense that is part of GCC, leading to false negatives.

4.2 C++ at the Binary Level

This section provides background on C++ internals needed to understand how

vps handles C++ binaries. We focus on how high-level C++ constructs translate

to the binary level. For a more detailed overview of high-level C++ concepts, we

refer to the corresponding literature [169].

4.2.1 Virtual Function Tables

C++ supports object-oriented programming with polymorphism. A class can in-

herit functions and �elds from another class. The class that inherits is called the

derived class and the class from which it inherits is the base class. In addition

to single inheritance (one class inherits from one other class), C++ also allows

multiple inheritance, where a derived class has multiple base classes.

A base class can declare a function as virtual, which allows derived classes

to override it with their own implementations. Programmers may choose not to

implement some functions in a base class: pure virtual functions. Classes con-

i
i

i
i

i
i

i
i

4.2. C++ AT THE BINARY LEVEL

V
PS

85

taining such functions are abstract classes and cannot be instantiated. Classes

deriving from an abstract base can only be instantiated if they override all pure

virtual functions.

Polymorphism is implemented at the binary level using virtual function ta-
bles (vtables) that consist of the addresses of all virtual functions of a particular

class. Each class containing at least one virtual function has a vtable. Instanti-

ated classes (called objects) hold a pointer to their corresponding vtable, which is

typically stored in read-only memory. Since each class has its own correspond-

ing vtable, it can also be considered as the type of the object. Throughout this

chapter, we refer to the pointer to a vtable as a vtblptr , while the pointer to the

object is called thisptr .

The Itanium C++ ABI [175] de�nes the vtable layout for Linux systems. The

vtblptr points to the �rst function entry in the vtable, and the vtable contains an

entry for each virtual function (either inherited or newly declared) in the class.

For example, in Figure 4.1, class B’s vtable contains two function entries because

the class implements virtual functions funcB1 and funcB2. Preceding the function

entries, a vtable has two metadata �elds: Runtime Type Identi�cation (RTTI) and

O�set-to-Top.

RTTI holds a pointer to type information about the class. Among other things,

this type information contains the name of the class and its base classes. How-

ever, RTTI is optional and often omitted by the compiler. It is only needed when

the programmer uses, e.g., dynamic_cast or type_info. Hence, a reliable static

analysis cannot rely on this information. Classes that do not contain RTTI have

the RTTI �eld set to zero.

O�set-to-Top is needed when a class uses multiple inheritance. As Figure 4.1

shows, a class that has multiple base classes like class C also has multiple vtables

(a base vtable and one or more sub-vtables). O�set-to-Top speci�es the distance

between a sub-vtable’s own vtblptr and the base vtblptr at the beginning of the

object. In our running example, the vtblptr to classC’s sub-vtable resides at o�set

0x10 in the object, while the vtblptr to the base vtable resides at o�set 0x0. Hence,

the distance between the two, as stored in the O�set-to-Top �eld in sub-vtable C,

is -0x10. O�set-to-Top is zero if the vtable is the base vtable of the class or no

multiple inheritance is used.

Vtables can contain one additional �eld, called Virtual-Base-O�set, but it is

only used in case of virtual inheritance, an advanced C++ feature for classes that

inherit from the same base multiple times (diamond-shaped inheritance). An

in-depth explanation is out of scope here because vps needs no adaptations to

support virtual inheritance, so we defer to [175].

i
i

i
i

i
i

i
i

86 CHAPTER 4. VPS

class C : public A, public B {
public:
 int varC;
 virtual void funcA1();
 virtual void funcB2();
 virtual void funcC();
};

class A {
public:
 int varA;
 virtual void funcA1();
 virtual void funcA2();
};

0x00: vtblptrC1

0x08: varA

Object C

0x10: vtblptrC2

0x18: varB

0x20: varC

0x10: 0

0x08: &RTTI_C

Vtable C

 0x00: &C::funcA1

 0x10: &C::funcB2

 0x18: &C::funcC

0x10: 0x10

SubVtable C

0x08: &RTTI_C

 0x08: &thunk to
 C::funcB2

 0x00: &B::funcB1

thisptr

HighLevel

Binary Level

 0x08: &A::funcA2

class B {
public:
 int varB;
 virtual void funcB1();
 virtual void funcB2();
};

OffsettoTop

RTTI

FunctionEntry1

FunctionEntry2

FunctionEntry3

FunctionEntry4

OffsettoTop

RTTI

FunctionEntry1

FunctionEntry2

0x00: vtblptrB

0x08: varB

Object B

0x10: 0

0x08: &RTTI_B

Vtable B

 0x00: &B::funcB1

thisptr

 0x08: &B::funcB2

OffsettoTop

RTTI

FunctionEntry1

FunctionEntry2

class D : public A {
public:
 virtual void funcA1();
 virtual void funcD1();
};

Figure 4.1. An example C++ class structure. The high-level view at the top shows base classes
A and B; derived class C which overrides virtual functions funcA1 and funcB2; and
derived class D which overrides virtual function funcA1. The bo�om details the
binary-level structure of objects of classes B and C.

4.2.2 C++ Object Initialization

Because vps secures virtual callsites by protecting the vtblptr set at initialization

time, we discuss object initialization of classes with vtables here. For the remain-

der of this chapter, we only consider classes and objects that have at least one

virtual function and therefore a vtable.

During object instantiation, the vtblptr is written into the object by the con-
structor. Figure 4.1 depicts an object’s memory layout at the binary level. The

i
i

i
i

i
i

i
i

4.2. C++ AT THE BINARY LEVEL

V
PS

87

vtblptr is at o�set 0x0, the start of the object. For classes with multiple inheri-

tance, the constructor also initializes vtblptrs to the sub-vtable(s). In addition, the

programmer may initialize class-speci�c �elds in the constructor. These �elds

are located after the vtblptr and, in case of multiple inheritance, after any sub-

vtblptrs.

For classes that have one or more base classes, the constructors of the base

classes are called before the derived class’s own initialization code. As a result,

the base class places its vtblptr into the object, which is subsequently overwritten

by the derived class’s vtblptr . Depending on the optimization level, constructors

are often inlined, which may complicate analysis that aims to detect constructors.

Abstract classes form a special case: although programmers cannot instanti-

ate abstract classes, and despite the fact that their vtables contain pure_virtual
function entries, the compiler can still emit code that writes the vtblptr to an ab-

stract class into an object. However, this happens only when creating or releasing

an object of a derived class, and the abstract vtblptr is immediately overwritten.

4.2.3 C++ Virtual Function Dispatch

Because classes can override virtual functions, the compiler cannot determine

the target of a call to such a function at compile time. Therefore, the emitted

binary code uses an indirect function call through the vtable of the object. This

is called a virtual function call, or vcall for short. In the Itanium C++ ABI [175],

the compiler emits the following structure:

mov RDI, thisptr

call [vtblptr + offset]

The thisptr is an implicit call argument, so it is moved into the �rst argument

register, which is RDI on Linux x86-64 systems. Next, the call instruction uses

the vtblptr to fetch the target function address from the object’s vtable. The

offset added to the vtblptr selects the correct vtable entry. Note that the o�set

is a constant, so that corresponding virtual function entries must be at the same

o�set in all vtables of classes that inherit from the same base class.

The same code structure holds for cases that use multiple inheritance. De-

pending on which (sub-)vtable the virtual function entry resides in, the vtblptr
either points to the base vtable or one of the sub-vtables. However, if the vtblptr
points to a sub-vtable, the thisptr does not point to the beginning of the object,

but rather to the o�set in the object where the used vtblptr lies. Consider the

example from Figure 4.1: when a function in the sub-vtable of class C is called,

the call uses the vtblptr to this sub-vtable, and the thisptr points to o�set 0x10

i
i

i
i

i
i

i
i

88 CHAPTER 4. VPS

of the object. Because the code structure is the same, the program treats calls

through sub-vtables and base vtables as analogous.

4.2.4 VTable Hijacking A�acks

As Section 4.2.3 explained, virtual callsites use the vtblptr to extract the pointer

to the called virtual function. Since the object that stores the vtblptr is dynam-

ically created during runtime and resides in writable memory, an attacker can

overwrite it and hijack the control �ow at a virtual callsite.

The attacker has two options to hijack an object, depending on the avail-

able vulnerabilities: leveraging a vulnerability to overwrite the object directly in

memory, or using a dangling pointer to an already deleted object by allocating

attacker-controlled memory at the same position (e.g., via a use-after-free vulner-

ability). In the �rst case, the attacker can directly overwrite the object’s vtblptr
and use it to hijack the control �ow at a vcall. In the second case, the attacker

needs not to overwrite any memory; instead, the vulnerability causes a virtual

callsite to use a still existing pointer to a deleted memory object. The attacker

can control the vtblptr by allocating new memory at the same address previously

occupied by the deleted object.

4.3 Related Work

In the following, we compare our design against related work to show our ad-

vances. We �rst consider approaches that work on the binary level, which are

closest to our system as this involves a complex binary analysis to �nd which

code needs to be instrumented for protection. Afterwards, we consider systems

that require source code. These systems lack the binary analysis, but provide

similar protections in case source code is available.

4.3.1 Binary-Only Defenses

Table 4.1 provides an overview of the compared approaches and what mecha-

nisms they implement. Marx [103] reconstructs class hierarchies from binaries

and uses the results for VTable Protection and Type-safe Object Reuse. VTable Pro-

tection veri�es at each vcall whether the vtblptr resides in the reconstructed class

hierarchy. However, the analysis is incomplete and the instrumentation falls back

to PathArmor [131] for missing results. Hence, the security policy is reduced to

PathArmor. vps does not rely on reconstruction of the class hierarchy, always re-

quiring an exact vtblptr match. Marx’ Type-safe Object Reuse uses reconstructed

i
i

i
i

i
i

i
i

4.3. RELATED WORK

V
PS

89

Table 4.1. Overview of binary-only mitigation techniques for C++ binaries

(a) Characteristics of each proposed mitigation. Marx (vtable) refers to the VTable protection
application of Marx, while Marx (type-safe) refers to its type-safe memory reuse approach.

Defense
Binary

only
Protects

vcalls
Protects

type
Protects

dangl. ptrs
Tolerates
FP vcalls

Marx [103] (vtable) 3 3 7 3 3

Marx [103] (type-safe) 3 7 7 3 n.a.
vfGuard [110] 3 3 7 3 7

T-VIP [51] 3 3 7 3 7

VTint [153] 3 3 7 3 7

VCI [46] 3 3 7 3 7

VTPin [118] RTTI 7 7 3 n.a.
VPS 3 3 3 3 3

(b) Security strategy for each mitigation technique

Defense Security Strategy

Marx [103] (vtable) vtblptr in reconstructed class hierarchy (fallback to Patharmor).
Marx [103] (type-safe) Memory allocator uses class hierarchy as type.
vfGuard [110] Call target resides in at least one vtable at correct o�set.
T-VIP [51] vtblptr and random vtable entry must point to read-only memory.
VTint [153] Verifies vtable ID, vtable must be in read-only memory.
VCI [46] vtblptr must be statically found, in class hierarchy, or vfGuard-allowed.
VTPin [118] Overwrites vtblptr when object freed.
VPS Check at vcall if object was created at a legitimated object creation site.

class hierarchies to prevent memory reuse between di�erent class hierarchies, re-

ducing the damage that can be done in a use-after-free attack using a dangling

pointer. This approach leaves considerable wiggle room for attackers for large

class hierarchies, while vps only allows the correct type. Moreover, Marx only

protects the heap whereas vps protects objects everywhere in memory.

VTint [153] instruments vtables with IDs in order to check their validity at

each identi�ed vcall instruction. However, VTint does not prevent an attacker

from exchanging the original vtblptr with a new pointer to an existing vtable.

vps prevents attackers not only from injecting a fake vtable, but also protects

against reuse of existing vtables. Moreover, VTint breaks the binary in case of

false positives in their virtual callsite analysis (see Section 4.6.3 for details).

VTPin [118] overwrites the vtblptr whenever an object is freed, to protect

against use-after-free attacks. However, VTPin fails to protect binaries without

RTTI, and does not prevent an attacker from overwriting the vtblptr .
vfGuard [110] identi�es vtables and builds a mapping which target functions

i
i

i
i

i
i

i
i

90 CHAPTER 4. VPS

can appear at which vtable o�sets. At virtual callsites, it ensures the target is

valid for the o�set and the calling convention is consistent. In case of the virtual

callsite residing in a virtual function, it can also narrow down the set of allowed

targets to be in the same object. However, vfGuard does not verify the validity of

the vtable itself, so an attacker could construct a fake vtable as long as the entries

do appear in some vtable at the same o�set. vps, on the other hand, protects the

original type of the object, completely preventing vtable forgery. Additionally,

in cases of falsely identi�ed virtual callsites, vfGuard breaks the instrumented

binary while vps does not.

T-VIP [51] protects vcalls against fake vtables. Each vcall checks if both the

vtblptr and a random entry point to read-only memory. However, this approach

breaks the binary when vtables reside in writable memory (see Section 4.6.1 for

details). Moreover, an attacker can still exchange the vtblptr to one that satis�es

the heuristics. Since vps does not rely heuristics, its security policy is stronger

and also protects the type of the object.

VCI [46] only allows a speci�c set of vtables at each vcall, mimicking the

source code approach VTV [130]. Since the analysis is not able to rebuild the

sets precisely, they resort to a di�erent kind of set depending on the results of

the analysis. Depending on whether the analysis succeeds, the set includes tar-

gets that could be resolved statically, targets that reside in the recovered class

hierarchy, or targets allowed by vfGuard. However, false positive virtual call-

sites in VCI break the application (see Section 4.6.3 for details). Furthermore,

incomplete class hierarchies may also break the application, i.e., the hierarchies

may not be completely recovered due to abstract classes [103]. vps allows calls

through any legitimately created object. Moreover, even in a hypothetical case

of a perfect analysis, VCI allows an attacker to change the vtblptr to another one

residing in the set. Hence, it does not protect the type of the object which vps

does.

4.3.2 Defenses Requiring Source Code

CFIXX [23] is the state-of-the-art in source-based C++ defenses. Like vps, it stores

the vtblptr in a safe memory region when an object is created. At each call-

site, the vtblptr is not extracted from the object itself, but fetched from the safe

memory region in order to prevent attacks. Since no check is done against the

vtblptr stored in the object, vtable hijacking attacks are prevented but not de-

tected. As it is implemented as LLVM compiler extension, CFIXX cannot protect

proprietary legacy applications for which no source code is available. Moreover,

not all software compiles on LLVM out-of-the-box (a notable example being the

i
i

i
i

i
i

i
i

4.4. THREAT MODEL

V
PS

91

Linux kernel [196]). While enforcement is similar between CFIXX and vps, our

analysis targeting binaries is completely di�erent. Performing accurate analysis

on a binary is a challenging problem, especially with regards to object creation

sites, where false negatives would break the protected application. Unlike in the

source code, the analysis has to take both direct and indirect access to the vtable

into account. Second, identifying the virtual callsites for the subsequent instru-

mentation with security checks is a challenging task since no type information

is available. Any false positive in this result breaks the application, which makes

an instrumentation capable of handling these necessary.

VTV [130] is a GCC compiler pass, which only allows a statically determined

set of vtables at each vcall. This approach is mimicked by most binary-only ap-

proaches [46, 51, 103, 110] and used as a ground truth for the accuracy evaluation.

Hence, in order to be able to compare vps with other binary-only approaches, we

do the same.

4.4 Threat Model

We assume the attacker is provided with an arbitrary memory read and write

primitive. However, the attacker is only able to write to memory locations that

are marked as writable by the application (i.e., data memory such as the stack

or heap) and cannot modify memory that is only readable/executable (such as

code and read-only data). This is the same threat model that is assumed by the

original work on CFI and others in this �eld (e.g., [2, 46, 130, 153]). Furthermore,

the attacker’s goal is to hijack the control �ow at a virtual callsite (since vps

focuses on protecting them). Other attacks such as data-only manipulations or

hijacking the control �ow by overwriting return addresses are out-of-scope.

4.5 System Overview

vps is based on the observation that the vtblptr is only written during object

initialization and cannot change afterwards. Therefore, only the vtblptr that is

written into the object by the constructor is a valid value. If a vtblptr changes

after the object was created, a vtable hijacking attack is in progress. Since these

attacks target virtual callsites, it is su�cient to check at each virtual callsite if

the vtblptr written originally into the object still resides there.

Figure 4.2 depicts the di�erences between a traditional application and a vps-

protected application. The traditional application initializes an object in the code

at 2 and uses a vcall and the created object at 4 to call a virtual function. As

i
i

i
i

i
i

i
i

92 CHAPTER 4. VPS

[...]

new Object A

Function X

[...]

A>funcA1()

[...]

RIP

Code

0x00: vtblptrA

0x08: varA

Object A

0x10: 0

0x08: &RTTI_A

Vtable A

 0x00: &A::funcA1

thisptr

 0x08: &A::funcA2

Memory State

[...]

new Object A

Function X

[...]

A>funcA1()

[...]

RIP

Code

0x00: vtblptrA

0x08: varA

Object A

0x10: 0

0x08: &RTTI_A

Vtable A

 0x00: &A::funcA1

thisptr

 0x08: &A::funcA2

Memory State

write safe memory

check safe memory [...]

Object A > vtblptrA

Safe Memory

[...]

1

2a

2b

3

4a

4b

5

1

2

3

4

5

Traditional Application VPS Application

Figure 4.2. High-level overview of the object instantiation and virtual callsite of a traditional
application (le� side) and a vps protected application (right side). For both ap-
plications the memory state is given while the instruction pointer executes the
function call.

explained in Section 4.2.3, the application uses the vtable to decide which virtual

function to execute. If an attacker is able to corrupt the object at 3 during the

execution, she can place her own vtable in memory and hijack the control �ow.

In contrast, the vps-protected application adds two additional functionalities to

the executed code. While the object is initialized, the vtblptr is also stored in a

safe memory region at 2a/b. Before a vcall is executed at 4a/b, the application

checks if the vtblptr in the object is still the same as the one stored for object A
in the safe memory region. The vcall is only executed when the check succeeds.

As a result, the same attacker that is able to corrupt the object at 3 is no longer

able to hijack the control �ow. In contrast to other binary-only defenses for

virtual callsites [46, 51, 103, 110, 153] that allow a speci�c overestimated set of

classes at a virtual function dispatch, vps has a direct mapping between an object

initialization site and the reachable vcalls.

4.6 Analysis Approach

vps protects binary C++ applications against control �ow hijacking attacks at

virtual callsites. To this end, we �rst analyze the binary to identify C++-speci�c

properties and then apply instrumentation to harden it.

We divide the analysis into three phases: Vtable Identi�cation, Object Initial-
ization Operations, and Virtual Callsite Identi�cation. While the Vtable Identi�ca-

tion static analysis is an improved and more exact version of Pawlowski et al. [103]

(�nding vtables in .bss and GOT, considering indirect referencing of vtables), the

other analyses are novel to vps. In the remainder of this section, we explain the

details of our analysis approach. Note that we focus on Linux x86-64 binaries

that use the Itanium C++ ABI [175]. However, our analysis approach is concep-

tually mostly generic and with additional engineering e�ort can be applied to

other architectures and ABIs. For architecture-speci�c steps in our analysis, we

i
i

i
i

i
i

i
i

4.6. ANALYSIS APPROACH

V
PS

93

describe what to modify to port the step to other architectures.

4.6.1 Vtable Identification

To protect vtblptrs in objects, we need to know the location of all vtables in the

binary. To �nd these, our static analysis searches through the binary and uses

a set of rules to identify vtables. Whenever all rules are satis�ed, the algorithm

identi�es a vtable. As explained earlier, Figure 4.1 shows a typical vtable struc-

ture. The smallest possible vtable in the Itanium C++ ABI [175] consists of three

consecutive words (O�set-to-Top, RTTI, and Function-Entry). We use the follow-

ing rules to determine the beginning of a vtable:

R-1 In principle, our algorithm searches for vtables in read-only sections such

as .rodata and .data.rel.ro. However, there are exceptions to this. If a class

has a base class that resides in another module and the compiler uses copy relo-

cation, the loader will copy the vtable into the .bss section [53]. Additionally,

vtables from other modules can be referenced through the Global O�set Table

(GOT), e.g., in position-independent code [0]. To handle these cases where the

vtable data lies outside the main binary, we parse the binary’s dynamic symbol

table and search for vtables that are either copied to the .bss section or refer-

enced through the GOT. Note that we do not rely on debugging symbols, only

on symbols that the loader uses, which cannot be stripped.

R-2 Recall that the vtblptr points to the �rst function entry in a class’s vtable,

and is written into the object at initialization time. Therefore, our algorithm looks

for code patterns that reference this �rst function entry. Again, there are special

cases to handle. The compiler sometimes emits code that does not reference the

�rst function entry of the vtable, but rather the �rst metadata �eld at o�set -0x10

(or -0x18 if virtual inheritance is used). This happens for example in position-

independent code. To handle these cases, we additionally look for code patterns

that add 0x10 (or 0x18) to the reference before writing the vtblptr into the object,

which is necessary to comply with the Itanium C++ ABI [175]. Our algorithm also

checks for the special case where vtables are referenced through the GOT instead

of directly.

R-3 As depicted in Figure 4.1, the O�set-to-Top is stored in the �rst metadata

�eld of the vtable at o�set -0x10. In most cases this �eld is 0, but when multiple

inheritance is used, this �eld gives the distance between the base vtblptr and the

sub-vtblptr in the object (see Section 4.2.1). Our algorithm checks the sanity of

i
i

i
i

i
i

i
i

94 CHAPTER 4. VPS

this value by allowing a range between -0xFFFFFF and 0xFFFFFF, as proposed

by Prakash et al. [110].

R-4 Recall that the RTTI �eld at o�set -0x8 in the vtable, which can hold a

pointer to RTTI metadata, is optional and usually omitted by the compiler. If

omitted, this �eld holds 0; otherwise, it holds a pointer into the data section or

a relocation entry if the class inherits from another class in a shared object.

R-5 Most of the vtable consists of function entries that hold pointers to virtual

functions. Our algorithm deems them valid if they point into any of the .text,

.plt, or .extern sections of the binary, or are a relocation entry.

Abstract classes are an edge case. For each virtual function that has no im-

plementation, the vtable has a function entry to a special function called pure_-
virtual. Because abstract classes are not meant to be instantiated, calling pure_-
virtual throws an exception. Additionally, the �rst function entries in a vtable

can be 0 if the compiler did not emit the code of the corresponding functions

(e.g., for destructor functions). To cope with this, Pawlowski et al. [103] allow 0

entries in the beginning of a vtable. We omit this rule because our approach can

safely ignore the instantiation of abstract classes, given that vtblptrs for abstract

classes are overwritten shortly after object initialization.

In case of multiple inheritance, we do not distinguish between vtables and

sub-vtables. That is, in the example in Figure 4.1, our approach identi�es Vtable
C and Sub-Vtable C as separate vtables. As discussed later, this does not pose

any limitations for our approach given our focus on vtblptr write operations (as

opposed to methods that couple class hierarchies to virtual call sites).

The combination of multiple inheritance and copy relocation poses another

edge case. In copy relocation, the loader copies data residing at the position

given by a relocation symbol into the .bss section without regards to the type

of the data. For classes that use multiple inheritance, the copied data contains

a base vtable and sub-vtable(s), but the corresponding relocation symbol holds

only information on the beginning and length of the data, not the vtable locations.

To ensure that we do not miss any, we identify every 8-byte aligned address of

the copied data as a vtable. For example, if the loader copies a data chunk of

0x40 bytes to the address 0x100, we identify the addresses 0x100, 0x108, 0x110,

. . . up to 0x138 as vtables. While this overestimates the set of vtables, only the

correct vtables and sub-vtables are referenced during object initialization.

Note that on other architectures, the assumed size of 8-byte per vtable entry

as used by our rules may have to be adjusted. For example, Linux on x86 (32-bit)

i
i

i
i

i
i

i
i

4.6. ANALYSIS APPROACH

V
PS

95

and ARM would use 4-byte entries. From a conceptual point of view, nothing

changes.

4.6.2 Object Initialization Operations

The next phase of our static analysis is based on the observation that to create a

new object, its vtblptr has to be written into the corresponding memory object

during the initialization. The goal of this analysis step is to identify the exact

instruction that does this. This step is Linux-speci�c but architecture-agnostic.

First, we search for all references from code to the vtables identi�ed in the

previous step. Because vtables are not always referenced directly, the analysis

searches for the following di�erent reference methods:

1. A direct reference to the start of the function entries in the vtable. This is

the most common way vtables are referenced.

2. A reference to the beginning of the metadata �elds in the vtable. This is

mostly used by applications compiled with position-independent code (i.e.,

MySQL server which additionally uses virtual inheritance).

3. An indirect reference through the GOT. Here, the address to the vtable is

loaded from the GOT.

Next, starting from the identi�ed references, we track the data �ow through

the code (using Static Single Assignment (SSA) form [165]) to the instructions

that write the vtblptrs into memory during object initialization. We later instru-

ment these instructions, adding code that stores the vtblptr in a safe memory

region. Our approach handles writes into memory objects agnostic to the loca-

tion the C++ object resides in (i.e., heap, stack, or global memory).

During our research, we encountered functions with inlined constructors

where the compiler emits code that stores the vtblptr temporarily in a stack vari-

able to use it at multiple places in the same function. Therefore, to ensure that we

do not miss any vtblptr write instructions, our algorithm continues to track the

data �ow even after a vtblptr is written into a stack variable. Because we cannot

easily distinguish between a temporary stack variable and an object residing on

the stack, our algorithm also assumes that the temporary stack variable is a C++

object. While this overestimates the set of C++ objects, it ensures that we do not

fail to instrument any vtblptr write instructions and hence this overapproxima-

tion is safe.

i
i

i
i

i
i

i
i

96 CHAPTER 4. VPS

4.6.3 Virtual Callsite Candidates

Because vps is geared speci�cally towards protecting vcalls against control �ow

hijacking, we have to di�erentiate between vcalls and normal indirect call in-

structions that are not C++ vcalls. We follow a two-stage approach to make this

distinction: we �rst locate all possible vcall candidates and subsequently verify

them. The veri�cation step consists of a static analysis component and a dynamic

one. In the following, we �rst explain how we identify candidate virtual callsites.

We use a similar technique as previous work [46, 51, 110, 153]. The analysis

searches for the vcall pattern described in Section 4.2.3, where the thisptr is the

�rst argument (stored in the RDI register on Linux x86-64) to the called function

and the vcall uses the vtblptr to retrieve the call target from the vtable. Note that

the thisptr is also used to extract the vtblptr for the call instruction. A typical

vcall looks as follows:

mov RDI, thisptr

mov vtblptr, [thisptr]

call [vtblptr + offset]

Note that these instructions do not have to be consecutive in the application,

but can be interspersed with other instructions. Two patterns can be derived

from this sequence: the �rst argument register always holds the thisptr , and the

call instruction target can be depicted as [[thisptr] + offset], where offset

can be 0 and therefore omitted. This speci�c dependency between call target and

�rst argument register is rare for non-C++ indirect calls.

With the help of the SSA form, our algorithm traces the data �ow backwards

starting from the �rst argument and call target of indirect calls. Either when

the data �ow intersects or when the beginning of the function is reached (i.e.,

if an argument register of the function is used directly for the call instruction),

the analysis checks if the previously described dependency is satis�ed. If so, we

consider the indirect call instruction a vcall candidate.

Note that the same pattern holds for classes with multiple inheritance. As

described in Section 4.2.3, when a virtual function of a sub-vtable is called, the

thisptr is moved to the position in the object where the sub-vtable resides. There-

fore, the �rst argument holds thisptr + distance, and the call target [[thisptr
+ distance] + offset]. This still satis�es the aforementioned dependency be-

tween �rst argument and call target. Furthermore, the pattern is also applicable

for Linux ARM, Linux x86, and Windows x86-64 binaries, requiring only a minor

modi�cation to account for the speci�c register or memory location used for the

i
i

i
i

i
i

i
i

4.6. ANALYSIS APPROACH

V
PS

97

�rst argument in the platform’s calling convention (R0 for ARM, the �rst stack

argument for Linux x86, and RCX for Windows x86-64).

To e�ectively protect vcalls, it is crucial to prevent false positive vcall iden-

ti�cations, as these may break the application during instrumentation. This is

also required for related work [46, 51, 110, 153]. While the authors of prior ap-

proaches report no false positives with the above vcall identi�cation approach,

our research shows that most larger binary programs do indeed contain patterns

that result in indirect calls being wrongly classi�ed as virtual callsites.

A possible explanation for the lack of false positives in previous work is that

most prior work focuses on Windows x86 [51, 110, 153], where the calling con-

ventions for vcalls and other call instructions di�er. That is, on Windows x86,

the thisptr is passed to the virtual function via the ECX register (thiscall calling

convention), while other call instructions pass the �rst argument via the stack

(stdcall calling convention) [176]. This is not the case for Windows x86-64 and

Linux (x86 and x86-64). On these architectures, the thisptr is passed as the �rst

argument in the platform’s standard calling convention (Microsoft x64, cdecl and

System V AMD64 ABI, respectively). While Elsabagh et al. [46], who focus their

work on Linux x86, did not report false positives, our evaluation does show false

positives in the same application set. We contacted Elsabagh et al., but were

unable to �nd an explanation for these di�ering results. Unfortunately, given

that source is unavailable for the approach of Elsabagh et al., we were unable to

reproduce their results.

4.6.4 Virtual Callsite Verification

Because a single false positive can break our approach, the next phase in our

static analysis veri�es the virtual callsite candidates. This phase is divided into

the following steps:

Data flow graphs Our analysis starts by using SSA form to track the data �ow

backwards from all identi�ed vtable references in the code. We perform this

data �ow tracking interprocedurally. This means that if the data �ow ends in an

argument register (as speci�ed by the calling convention), the tracking continues

at the call instruction that calls this function. If the data �ow ends in the return

value register RAX, we continue the data �ow tracking at each return instruction

of the function that created the return value (i.e., the function called just before

the return site). This analysis creates a data �ow graph with the instruction

referencing the vtable as the only sink node and the instructions where the data

�ow starts as source nodes.

i
i

i
i

i
i

i
i

98 CHAPTER 4. VPS

0x4e call [rax_21+0x10]

0x42 mov rax_21, [rbx_70xd0] 0x21 mov [rbx_70xd0], vtblptr

0x10 mov rbp_5, rsp_0

 VcallData Flow

0x10 mov rbp_5, rsp_0

Vtable Data Flow

0x4e call [rax_21+0x10]

0x32 mov rax_21, [rbx_70xd0] 0x21 mov [rbx_70xd0], vtblptr

0x10 mov rbp_5, rsp_0

Combined Data Flow

0x13 mov rbx_7, rbp_5 0x13 mov rbx_7, rbp_5

0x13 mov rbx_7, rbp_5

Common Data Flow Path

a)

b)

0x10 mov rbp_5, rsp_0

0x13 mov rbx_7, rbp_5

0x21 mov [rbx_70xd0], vtblptr

0x4e call [rax_21+0x10]

0x32 mov rax_21, [rbx_70xd0]

Vtable Data Flow Path Vcall Data Flow Path

c)

Basic Block 1

0x10 mov rbp, rsp

0x13 mov rbx, rbp

[...]

Basic Block 2

0x21 [rbx0xd0], vtblptr

[...]

[...][...]

Basic Block 4

[...]

[...]

0x4e call [rax+0x10]

Basic Block 3

[...]

[...]

0x32 mov rax, [rbx0xd0]

Common Basic Blocks Vtable Basic Blocks Vcall Basic Blocks

d)

e)

Basic Block 1

Basic Block 2

Basic Block 3

Basic Block 4

Basic Block

Basic Block

Basic BlockBasic Block

Basic Block Basic Block

Control Flow Path

Figure 4.3. The five steps of the vcall verification phase. Step a) shows the data flow graph in
SSA form, with the starting node in gray. Step b) combines the data flow graphs of
a). Step c) separates the paths through the data flow graph into three components.
Step d) shows the basic blocks corresponding to the data flow paths. Step e) shows
a path through the CFG containing all previously identified basic blocks.

We perform the same data �ow analysis for the call target of each identi�ed

virtual callsite candidate. Again, this creates a data �ow graph with the candidate

call instruction as the only sink node and the instructions starting the data �ow

as source nodes. Figure 4.3a shows an example.

i
i

i
i

i
i

i
i

4.6. ANALYSIS APPROACH

V
PS

99

Combined data flow graphs Next, the algorithm merges the data �ow graphs

for indirect calls with those for vtable references, joining graphs that share at

least one source, as shown in Figure 4.3b. This creates a new combined graph

depicting the data �ow to vtable-referencing instructions that could potentially

reach the vcall candidate. In Figure 4.3b, both graphs are merged because they

share the instruction at address 0x10 as their source node.

Data flow paths The next step searches all paths from the source node to the

vtable-referencing node and from the source node to the vcall node. When at

least one path is found, we split the path into a common pre�x (nodes with

addresses 0x10 and 0x13 in Figure 4.3c), a part belonging only to the vtable-

referencing instruction (node with address 0x21), and a part belonging only to

the vcall instruction (nodes with addresses 0x32 and 0x4e).

Basic blocks Note that the data �ow graphs do not give any information on

whether a control �ow path exists that starts at the source node instruction, visits

the vtable-referencing instruction, and ends at the vcall instruction. For this rea-

son, we search the corresponding basic block for each data-�ow node, as shown

in Figure 4.3d, considering basic blocks that correspond to multiple data �ow

nodes only once.

Control flow path Next, the analysis looks for a path through the Control

Flow Graph (CFG) of the function that traverses the data source, the vtable-

referencing instruction, and the vcall instruction. We do this by successively

searching for sub-paths between basic blocks of interest, starting with a path be-

tween Basic Block 1 and Basic Block 2, then a path between Basic Block 2

and Basic Block 3, and so on. We traverse the CFG in a breadth-�rst search

(BFS) manner, so that the search yields the shortest possible paths. After we �nd

paths for all relevant basic block pairs, we combine the paths into one control

�ow path, as shown in Figure 4.3e.

A special case occurs if a basic block relevant to the vcall already resides in

the sub-path found for the vtable-referencing instruction. For example, suppose

that in the given example Basic Block 3 lies between Basic Block 1 and

Basic Block 2 in the CFG. Then, adding Basic Block 4 to the path yields a

full path with the desired semantics. However, our algorithm does not �nd this

path because there is no sub-path from Basic Block 2 to Basic Block 3. To

handle this, we check if the destination basic block resides in a previously found

path. If it does, the analysis uses the next basic block as the target instead.

i
i

i
i

i
i

i
i

100 CHAPTER 4. VPS

Symbolic execution As a last step, we symbolically execute the obtained con-

trol �ow paths to track the �ow of the vtblptr through the binary. When an

instruction writes a vtblptr into the memory state, we replace that vtblptr with

a symbolic value. To keep the analysis scalable to large real-world applications,

our symbolic execution simply executes basic blocks without checking whether

branches can actually be taken in a concrete execution. If a basic block contains a

call instruction that is not part of our original data �ow path, we simply execute

a return instruction immediately after the call instead of symbolically executing

the called function. When the symbolic execution reaches the vcall instruction,

we check the obtained memory state to verify that the vtblptr is used for the call

target. If so, we conclude that the vcall candidate is in fact a vcall.

In addition to explicit vtable-referencing instructions, this analysis checks im-

plicit vtable references as well. In case the earlier backward data �ow analysis

shows that a vcall target stems from the �rst argument register, we check whether

the calling function is a known virtual function (by checking whether the func-

tion resides in any previously identi�ed vtable). If it is, we add a special virtual

function node to the data �ow graph. We then search for a path from this virtual

function node to the vcall instruction. If a path is found, we apply the steps de-

scribed previously for transforming the data �ow path to a control �ow path. For

such paths, before starting the symbolic execution, we add an arti�cial memory

object containing the vtblptr and place the thisptr in the �rst argument register.

This way, we simulate an implicit use of the vtable through the initialized object.

We perform the whole vcall veri�cation analysis in an iterative manner. When

the data �ow tracking step stops at an indirect call instruction, we repeat it as

soon as our analysis has veri�ed the indirect call as a vcall instruction and has

therefore found corresponding vtables for resolving the target. The same applies

to data �ow tracking that stops at the beginning of a virtual function (because

no caller is known). As soon as we are able to determine a corresponding vcall

instruction, we repeat the analysis. The analysis continues until we reach a �xed

point where the analysis fails to �nd any new results.

4.6.5 Dynamic Virtual Call Profiling

Our approach includes a dynamic pro�ling phase that further re�nes the vcall

veri�cation. During this phase, we execute the application with instrumentation

code added to all virtual callsite candidates. Whenever the execution reaches a

vcall, the instrumentation code veri�es that the �rst argument contains a valid

thisptr . To verify this, we check if the �rst element of the object the thisptr points

i
i

i
i

i
i

i
i

4.7. INSTRUMENTATION APPROACH

V
PS

101

to contains a valid pointer to a known vtable (vtblptr). If it does, we consider the

vcall veri�ed. Otherwise, we regard the vcall as a false positive of the static

analysis and discard it.

Because this phase only instruments vcall candidates identi�ed by the static

analysis described in Section 4.6.3, it is safe to assume the dependency between

�rst argument and call instruction target. Hence, the above dynamic pro�ling

check is su�cient to remove false positives seen during the pro�ling run, given

that the odds of �nding a C-style indirect callsite with such a distinctive pattern

that uses C++ objects is extremely unlikely. We did not encounter any such case

during our comprehensive evaluation.

4.7 Instrumentation Approach

vps protects virtual callsites against control-�ow hijacking attacks by instrument-

ing the application using the results from the analysis phase. We instrument two

parts of the program: Object Initialization and Virtual Callsites. The following

describes how both kinds of instrumentation work.

4.7.1 Object Initialization

We use the data collected in Section 4.6.2 to instrument object initialization,

speci�cally the instruction that writes the vtblptr into the object. When an ob-

ject is created, the instrumentation code stores a key-value pair that uses the

memory address of the object as the key and maps it to the vtblptr , which is the

associated value. To prevent tampering with this mapping, we store it in a safe

memory region.

Recall that when a C++ object is created that inherits from another class, the

initialization code �rst writes the vtblptr of the base class into the object, which

is then overwritten by the vtblptr of the derived class. Our approach is agnostic

to inheritance and simply overwrites the vtblptr in the same order (because each

vtblptr write instruction is instrumented).

Similarly, our approach is agnostic to multiple inheritance, because object

initialization sites use the address where the vtblptr is written as the object ad-

dress. As explained in Section 4.2.3, at a virtual callsite the thisptr points to the

address of the object the used vtblptr resides in. For a sub-vtable, this is not the

beginning of the object, but an o�set somewhere in the object (in our running

example in Figure 4.1 o�set 0x10). Because this is exactly the address that our

approach uses as the key for the safe memory region, our approach works for

multiple inheritance without any special handling.

i
i

i
i

i
i

i
i

102 CHAPTER 4. VPS

Moreover, despite the fact that we instrument only object initialization and

ignore object deletion, our approach does not su�er from consistency problems:

when an object is deleted and its released memory is reused for a new C++ object,

the instrumentation code for the initialization of this new object automatically

overwrites the old value in the safe memory region with the current vtblptr .

4.7.2 Virtual Callsites

Because a single false positive virtual callsite can break the application, we de-

signed the vcall instrumentation code such that it can detect false positives and

�lter them out. In doing so, the vcall instrumentation continuously re�nes the

previous analysis results. The vcall instrumentation consists of two components:

Analysis Instrumentation and Security Instrumentation. In the following, we de-

scribe both components.

Analysis instrumentation We add analysis instrumentation code to all vcall

candidates that we were unable to conclusively verify in our prior analysis. For

veri�ed vcall sites, we only add security instrumentation and omit the analysis

code.

Before executing a vcall candidate, the analysis instrumentation performs the

same check as the dynamic pro�ling phase described in Section 4.6.5. If the check

fails, meaning that this is not a vcall but a regular C-style indirect call, we re-

move all instrumentation from the call site. If the check succeeds, we replace the

analysis instrumentation with the more lightweight security instrumentation for

veri�ed virtual callsites described in Section 4.7.2, and immediately run the secu-

rity instrumentation code.

Through our use of adaptive instrumentation, our approach is able to cope

with false positives and further re�ne the analysis results during runtime. By

caching the re�ned results on disk, we can reuse these results in later launches

of the same application, so that vps’s performance improves over time.

Because the analysis instrumentation veri�es any potential false positives

at runtime, the static vcall veri�cation from Section 4.6.4 and the dynamic pro-

�ling from Section 4.6.5 are optional. Omitting these steps does not a�ect the

correctness of our approach, although we recommend using them for optimal

performance.

Security instrumentation We protect veri�ed vcall sites against control-�ow

hijacking by adding security instrumentation code that runs before allowing the

vcall. The instrumentation uses the thisptr in the �rst argument register to re-

i
i

i
i

i
i

i
i

4.8. IMPLEMENTATION

V
PS

103

trieve the vtblptr stored for this object in the safe memory region. To decide

whether to allow the vcall, the instrumentation code compares the vtblptr from

the safe memory region with the one stored in the actual object used in the vcall.

If they are the same, the instrumentation allows the vcall. If the two pointers

di�er, we terminate the execution with a warning that a control-�ow hijacking

attack was detected.

4.8 Implementation

Based on the approach from Section 4.6, we integrated our static analysis into

the Marx framework [103]. This framework provides a basic symbolic execution

based on the VEX-IR from the Valgrind project and data structures needed for

C++ binary analysis. It is written in C++ and targets Linux x86-64 binaries. To

support integration of our approach into the Marx framework, we added support

for SSA and a generic data-�ow tracking algorithm.

Because the framework uses VEX-IR as the back-end, it is easily extendable

to other architectures. The same is true for our approach, which is mostly inde-

pendent from the underlying architecture, as described in Section 4.6. To balance

precision and scalability, the symbolic execution emulates only a subset of the 64-

bit VEX instructions that suits our focus on vtable-centered data-�ow tracking

in real-world applications.

We use IDAPython for vtable identi�cation and CFG extraction. Addition-

ally, we use instruction data provided by IDA Pro to support the SSA transforma-

tion, and use Protocol Bu�ers to export the results in a programming language–

agnostic format. We implement dynamic pro�ling with Pin [91]. We build the

runtime component of vps on top of Dyninst v9.3.2 [11]. Dyninst is responsible

for installing object initialization and (candidate) virtual callsite hooks. We inject

these wrappers into the target program’s address space by preloading a shared

library.

To con�gure the safe memory region, our preloaded library maps the lower

half of the address space as a safe region at load time; this is straightforward for

position-independent executables as their segments are mapped exclusively in

the upper half of the address space by default. To compute safe addresses, we

subtract 64 TB
1

from the addresses used by object initialization or virtual calls.

To thwart value probing attacks in the safe region, we (1) mark all safe region

pages as inaccessible by default and make them accessible on demand, and (2)

use a �xed o�set chosen randomly at load time for writes to the safe region. To

1
Linux x86-64 provides 47 bits for user space mappings, and 247 = 128 TB.

i
i

i
i

i
i

i
i

104 CHAPTER 4. VPS

achieve the latter, we write a random value to the gs register and use it as the

o�set for all accesses to the safe region. To mark pages readable/writable, we use

a segfault handler that uses mprotect to allow accesses from our library.

We omit an evaluation of potential optimizations already explored in prior

work [23, 83], such as avoiding Dyninst’s penalties for (re)storing unclobbered

live registers or removing trampoline code left over after nopping out analysis

instrumentation code. Similarly, we do not implement hash-based safe region

compression that would reduce virtual and physical memory usage and allow

increased entropy in the safe region, nor do we use Intel MPK [192] to further

secure the safe region. We consider these optimizations orthogonal to our work.

4.9 Evaluation

In this section, we evaluate vps in terms of performance and accuracy. We focus

our evaluation on MySQL, Node.js, and the �fteen C++ benchmarks found in

SPEC CPU2006 and CPU2017.

4.9.1 Virtual Callsite Identification Accuracy

In order to measure the accuracy of the protection of vps, we evaluate the accu-

racy of the vcall identi�cation analysis. As applications for our evaluation, we use

the C++ programs of SPEC CPU2006 and SPEC CPU2017 that contain virtual call-

sites, as well as the MySQL server binary (5.7.21), and the Node.js binary (8.10.0).

We used the default optimization levels (O2 for CPU 2006, O3 for all others). All

programs are compiled with GCC 8.1.0. In order to gain a ground truth of virtual

callsites, we use VTV [130] and compare against our analysis results. Since VTV

leverages source code information, its results are usually used as ground truth

for binary-only approaches focusing on C++ virtual callsites. Unfortunately, com-

piling 450.soplex results in a crash and it is therefore omitted. Table 4.2 shows

the results of our vcall accuracy evaluation.

We observe that the analysis of vps is capable of identifying the vast majority

of virtual callsites in the binary, ranging from 91.4% (510.parest_r) to all vcalls de-

tected (several benchmarks). Our average recall is 97.7% on SPEC CPU2006 and

97.4% on SPEC CPU2017. With the exception of one outlier (526.blender_r with

a precision of 68.3%) we have a low number of false positives, with precisions

ranging from 87.0% (447.dealII) to no false positives at all (several benchmarks).

To cope with the problem of false positive identi�cations, we verify vcalls before

we actually instrument them with our security check. The static analysis veri-

�cation is able to verify 37.9% in the best case (526.blender_r) and in the worst

i
i

i
i

i
i

i
i

4.9. EVALUATION 105

Table 4.2. Accuracy evaluation of our vcall identification.

(a) This table shows (1) the ground truth generated by VTV; (2) static vcall identification details,
depicting the true positives, false positives, recall, and precision for indirect call instructions
identified as vcall; and (3) static vcall verification results, displaying the number of verified
vcalls, its percentage, and the number of false positives.

Static identification Static verification

Program #GT #TP #FP Recall (%) Prec. (%) # % #FP

447.dealII 1,558 1,443 215 92.6 87.0 379 24.3 7
450.soplex – – – – – – – –
453.povray 102 102 10 100.0 91.1 32 31.4 0
471.omnetpp 802 800 0 99.8 100.0 245 30.6 0
473.astar 1 1 0 100.0 100.0 0 0.0 0
483.xalancbmk 13,440 12,915 17 96.1 99.9 2,122 15.8 0
Average (SPEC CPU2006) 97.7 95.6 20.4

510.parest_r 4,678 4,275 528 91.4 89.0 660 14.1 13
511.povray_r 122 122 14 100.0 89.7 33 27.1 0
520.omnetpp_r 6,430 6,190 23 96.3 99.6 1,585 24.7 0
523.xalancbmk_r 33,880 33,069 12 97.6 100.0 1,948 5.8 0
526.blender_r 174 172 80 98.9 68.3 66 37.9 0
541.leela_r 1 1 0 100.0 100.0 0 0.0 0
Average (SPEC CPU2017) 97.4 91.1 18.3

MySQL 11,876 11,589 179 97.6 98.5 1,330 11.2 3
Node.js 12,643 12,320 353 97.5 97.2 1,538 12.2 10

(b) Static and dynamic verification results. For each program, this table depicts the number
of verified vcall instructions and its percentage, verified false positives and removed false
positive identified vcalls. Cases where dynamic verification failed due to VTV false positives
are in parentheses.

Static and dynamic verification

Program # % #FP # removed

447.dealII 423 27.2 18 0
450.soplex – – – –
453.povray 55 53.9 0 6
471.omnetpp 530 66.1 0 0
473.astar 0 0.0 0 0
483.xalancbmk 3,792 28.2 1 0
Average (SPEC CPU2006) 35.1

510.parest_r (660) (14.1) (13) –
511.povray_r 62 50.8 0 6
520.omnetpp_r 2,286 35.6 6 0
523.xalancbmk_r 4,961 14.6 0 0
526.blender_r 70 40.2 0 49
541.leela_r 0 0.0 0 0
Average (SPEC CPU2017) 25.9

MySQL (1,330) (11.2) (3) –
Node.js 2,559 20.2 45 118

i
i

i
i

i
i

i
i

106 CHAPTER 4. VPS

92 /**
93 * Destroy the object pointed to by a pointer type.
94 */
95 template<typename _Tp>
96 inline void
97 _Destroy(_Tp* __pointer)
98 { __pointer->~_Tp(); }

2545 Vector<double> us[dim];
2546 for (unsigned int i=0; i<dim; ++i)
2547 us[i].reinit (dof_handler.n_dofs());

Figure 4.4. Two source code snippets where VTV fails to identify a virtual callsite. The top snip-
pet was taken from stl_construct.h; the bo�om is from grid_generator.cc.

case none. On average we veri�ed 20.4% on SPEC CPU2006 and 18.3% on SPEC

CPU2017. Dynamic veri�cation (see Section 4.6.5) considerably improves veri�-

cation performance, verifying 35.1% and 25.9% respectively. Unfortunately, we

were not able to execute 510.parest_r and MySQL with VTV. Both applications

crashed with an error message stating that VTV was unable to verify a vtable

pointer (i.e., a false positive).

A manual analysis of the missed virtual callsites reveals two possibilities for

a miss: the data �ow was too complex to be handled correctly by our implemen-

tation, or the described pattern in Section 4.6.3 was not used. The former can

be �xed by improving the implemented algorithm that is used for �nding the

described pattern. In the latter, the vtblptr is extracted from the object, however,

a newly created stack object is used as thisptr for the virtual callsite which does

not follow a typical C++ callsite pattern. This could be addressed by considering

additional vcall patterns, at the risk of adding false positives. Given our already

high recall rates, we believe this would not be a favorable trade-o�.

As evident from the table, our veri�cation process veri�ed 86 cases which

VTV did not recognize as virtual callsites. A manual veri�cation of all cases

show that these are indeed vcall instructions and hence missed virtual callsites

by VTV. For example, the top snippet in Figure 4.4 depicts the relevant code for

34 of these cases that are linked to the compiler provided �le stl_construct.h.

Line 98 provides the missed vcall instruction that calls the destructor of the pro-

vided object. Since the destructor of a class is also a virtual function, it is invoked

with the help of a virtual callsite. Another example is in the bottom snippet of

Figure 4.4 for 510.parest_r. Here a vector is created and the function reinit()

is invoked on line 2547. However, since the class dealii::Vector<double> is

i
i

i
i

i
i

i
i

4.9. EVALUATION

V
PS

107

Table 4.3. Results of Marx’s vcall accuracy evaluation. For each application this table shows
(i) the ground truth generated by VTV; (ii) static vcall identification, depicting the
number of indirect call instructions identified as vcall that are true positives, the
false positives, recall and precision.

Static identification

Program #GT #TP #FP Recall (%) Prec. (%)

447.dealII 1,558 1,307 122 83.9 91.5
450.soplex – – – – –
453.povray 102 98 10 96.1 90.7
471.omnetpp 802 701 3 87.4 99.6
473.astar 1 1 0 100.0 100.0
483.xalancbmk – – – – –
Average (SPEC CPU2006) 91.8 95.4

510.parest_r 4,678 3,673 295 78.5 92.6
511.povray_r 122 115 11 94.3 91.3
520.omnetpp_r 6,430 5,465 22 85.0 99.6
523.xalancbmk_r 33,880 23,541 33 69.4 99.9
526.blender_r 174 171 1,347 98.3 11.3
541.leela_r 1 0 0 0.0 0.0
Average (SPEC CPU2017) 70.9 65.8

MySQL 11,876 10,867 1,214 81.3 88.8
Node.js – – – – –

provided by the application and reinit() is a virtual function of this class, this

function call is translated into a virtual callsite. We contacted the VTV authors

about this issue and they con�rmed that this happens because the compiler ac-

cesses the memory of the objects directly when calling the virtual function in the

internal intermediate representation. Usually, the compiler accesses them while

going through an internal vtblptr �eld. Unfortunately, to �x this issue in VTV

would require a lot of non-trivial work since the analysis has to be enhanced.

A direct comparison of the accuracy with other binary-only approaches is

di�cult since di�erent test sets are used to evaluate it. For example, vfGuard

evaluates the accuracy of their approach against only two applications, while T-

VIP is only evaluated against one. VTint states absolute numbers without any

comparison with a ground truth. VCI evaluates their approach against SPEC

CPU2006, but the numbers given for the ground truth created with VTV di�er

completely from ours (i.e., 9,201 vs. 13,440 vcalls for 483.xalancbmk) which makes

a comparison di�cult. Additionally, the paper reports no false positives during

their analysis which we encounter in the same application set with a similar

identi�cation technique. Unfortunately, as discussed in Section 4.6.3, we were

i
i

i
i

i
i

i
i

108 CHAPTER 4. VPS

Table 4.4. Object creation accuracy results. For each application, this table shows the number
of vtable references in the code as found in the ground truth, and as identified or
missed by our analysis.

Program #GT # identified #missed

447.dealII – – –
450.soplex 102 228 0
453.povray 103 226 0
471.omnetpp 372 871 0
473.astar 0 8 0
483.xalancbmk 2,918 6,530 0

510.parest_r 12,482 25,804 0
511.povray_r 103 224 0
520.omnetpp_r 1,381 3,280 0
523.xalancbmk_r 2,790 6,323 0
526.blender_r – – –
541.leela_r 87 180 0

MySQL 8,532 11,524 0
Node.js 7,816 19,204 0

not able to determine the reason for this. Since Marx is open source, we analyzed

our evaluation set with it. In order to create as few false positives as possible we

used its conservative mode. Unfortunately, Marx crashed during the analysis of

483.xalancbmk and Node.js. The results of the analysis can be seen in Table 4.3.

Compared to Marx, we have considerably higher recall with similar precision.

Averaged over the CPU2006 benchmarks supported by Marx, vps achieves 98.2%

recall (91.8% for Marx) and on CPU2017 97.4% versus 70.9% respectively. This

does not come at the cost of more false positives, as our precision is similar on

CPU2006 (94.5% vs. 95.4%) and much better on CPU2017 (91.1% vs. 65.8%).

Overall, our analysis shows that vps is precise enough to provide an appli-

cation with protection against control �ow hijacking attacks at virtual callsites.

In addition, it shows that even source code approaches such as VTV do not �nd

all virtual callsite instructions and can bene�t from binary-only approaches such

as vps. Furthermore, the occurring number of false positive identi�cation under-

lines the design approach to handle them during the instrumentation rather than

con�de in not having them.

4.9.2 Object Initialization Accuracy

To avoid breaking applications, vps must �nd and instrument all valid object

initialization sites. To ensure that this is the case, we compare the number of

i
i

i
i

i
i

i
i

4.9. EVALUATION

V
PS

109

vtable-referencing instructions found by vps to a ground truth. We generate the

ground truth with an LLVM 4.0.0 pass that instruments Clang’s internal func-

tion CodeGenFunction::InitializeVTablePointer(), which Clang uses for

all vtable pointer initialization.

Table 4.4 shows the results for the same set of applications we used in Sec-

tion 4.9.1. We omit results for 447.dealII from SPEC CPU 2006 and 526.blender_r
from SPEC CPU 2017 because these benchmarks fail to compile with LLVM 4.0.0.

The results for the remaining applications show that our analysis conservatively

overestimates the set of vtable-referencing instructions, ensuring the security

and correctness of vps at the cost of a slight performance degradation due to the

overestimated instruction set.

4.9.3 Performance

This section evaluates the runtime performance of vps by measuring the time it

takes to run each C++ benchmark in SPEC CPU2006 and CPU2017. We compare

vps-protected runtimes against the baseline of original benchmarks without any

instrumentation. We compile all test cases as position-independent executables

with GCC 6.3.0. For each benchmark, we report the median runtime over 11 runs

on a Xeon E5-2630 with 64 GB RAM, running CentOS Linux 7.4 64-bit. We use a

single additional run with more logging enabled to obtain statistics such as the

number of executed virtual calls. Table 4.5 details our results.

For each benchmark, the �rst group in Table 4.5 shows the number of instru-

mented object initializations, positive virtual calls, and candidate virtual calls

found by our analysis. These numbers match show the variety in properties of

C++ applications; some programs make little to no use of virtual dispatching, e.g.,

444.namd, 508.namd_r, 531.deepsjeng_r, and 473.astar. Others contain thousands

of object initializations and virtual callsites, e.g., 510.parest_r with over 12,000 ob-

ject initializations, or 483.xalancbmk in CPU2006 with more than 1,300 veri�ed

virtual callsites.

The second group in Table 4.5 �rst shows the number of veri�ed virtual calls

(true positive) and regular indirect calls (false positive). These numbers show

that most vcall candidates turn out to be real vcalls, indicating that our analysis is

relatively conservative and that certain, possibly heuristic-based improvements,

may be possible. This second group also depicts the absolute numbers of exe-

cuted virtual calls and object initializations. With numbers in the billions for

some applications, it is clear that our instrumentation must be lightweight.

Finally, the third group in Table 4.5 shows the absolute runtime in seconds

for each benchmark, comparing uninstrumented baseline runs to vps-protected

i
i

i
i

i
i

i
i

110 CHAPTER 4. VPS

Table 4.5. vps performance results and runtime statistics. For each binary, this table shows
(1) binary instrumentation details, depicting the number of instrumented object
initializations (#inits), positive virtual calls (#positive), and candidate vcalls (#candi-
dates); (2) runtime statistics, listing the number of true positive (#TP) and false
positive (#FP) virtual calls, and the total number of virtual calls (#vcalls) and object
initializations (#inits); and (3) runtime overhead, listing runtime overhead (vps)
compared to the baseline (base).

Binary instrumentation Runtime statistics Runtime overhead

inits #pos. # cand. #TP #FP # vcalls # inits base vps

444.namd 6 0 2 0 0 0 2,018 343,5 342,9 (+ 0%)
447.dealII 4,283 161 1,459 47 0 97m 21m 289.7 299.2 (+ 3%)
450.soplex 120 195 364 48 0 1,665,968 40 215.8 220.2 (+ 2%)
453.povray 98 21 91 21 6 101,743 162 135.8 153.3 (+13%)
471.omnetpp 507 117 677 327 0 1,585m 2,156m 290.0 370.2 (+28%)
473.astar 0 0 1 0 0 0 0 350.3 351.6 (+ 0%)
483.xalancbmk 4,554 1,348 11,623 1,639 0 3,822m 2,316m 185.0 249.4 (+35%)
Geometric mean (SPEC CPU2006) + 9%

508.namd_r 48 0 0 0 0 0 21 271.8 271.8 (+ 0%)
510.parest_r 12,206 243 4,539 350 4 2,625m 119m 586.3 603.1 (+ 3%)
511.povray_r 113 19 121 21 6 4,577 183 498.7 572.0 (+15%)
520.omnetpp_r 2,591 447 5,310 751 0 7,958m 2,070m 507.4 661.7 (+30%)
523.xalancbmk_r 4,512 801 30,771 2,844 0 4,873m 2,314m 366.8 461.5 (+26%)
526.blender_r 43 37 174 4 46 11 3 325.8 328.6 (+ 1%)
531.deepsjeng_r 0 0 0 0 0 0 0 345.1 353.1 (+ 2%)
541.leela_r 177 0 2 0 0 0 404,208 535.5 534.6 (+ 0%)
Geometric mean (SPEC CPU2017) +11%

runs. Runtime overhead varies from 0% for programs with little to no virtual dis-

patch code to 35% for the worst-case scenario (483.xalancbmk). In almost all cases,

we see a correlation between increased overhead and number of instrumenta-

tion points (object initializations and virtual calls). An exception is 511.povray_r,
which shows a 15% performance decrease despite a relatively low number of

vcalls and object initializations. Further inspection shows that this is caused by

the 6 false positives candidate vcalls; if we disable hot-patching, our vcall instru-

mentation code is called over 18 billion times. While we remove instrumentation

hooks for the majority of these cases, which are not real vcalls, our current im-

plementation does not remove the Dyninst trampolines. These trampolines are

the source of the unexpected overhead.

To better understand the overhead of vps, we gathered detailed statistics for

both SPEC CPU2006 and SPEC CPU2017 in varying con�gurations. Figure 4.6

shows the results. Comparing to the baseline, we �rst run SPEC with only instru-

mentation for object initializations enabled. In this run, the entire safe region is

read/writable and the instrumentation only (1) computes the address in the safe

region to store the vtable pointer at, and (2) copies the vtable pointer there. In

i
i

i
i

i
i

i
i

4.9. EVALUATION

V
PS

111

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

508.namd

510.parest

511.povray

520.omnetpp

523.xalancbmk

526.blender

531.deepsjeng

541.leela

geomean

N
or

m
al

iz
ed

ru
nt

im
e

Object inits
+Virtual calls

+Secure mprotect
+Dynamic analysis

(a) Microbenchmarks for SPEC CPU2017

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

444.namd

447.dealII

450.soplex

453.povray

471.omnetpp

473.astar

483.xalancbmk

geomean

N
or

m
al

iz
ed

ru
nt

im
e

Object inits
+Virtual calls

+Secure mprotect
+Dynamic analysis

(b) Microbenchmarks for SPEC CPU2006

Figure 4.6. Normalized runtime for C++ programs in SPEC CPU2006 and CPU2017, with
cumulative configurations: (1) only instrument object initializations; (2) also in-
strument virtual call instructions; (3) secure the safe region by marking all pages
unwritable, and only selectively mprotect-ing them if they are accessed from
our own instrumentation code; and (4) include o�line dynamic analysis results,
reducing the need for hot-patching.

the second con�guration, we additionally instrument virtual calls. We check

whether candidates are actual vcalls by testing the call’s �rst argument and, if

it can be dereferenced, looking this value up in the list of known vtables. We

then either patch veri�ed vcalls to enable the fast path, or remove instrumenta-

tion for false positives. The fast path fetches the vtable pointer by dereferencing

i
i

i
i

i
i

i
i

112 CHAPTER 4. VPS

the �rst argument, and then compares it against the value stored in the safe re-

gion. The third con�guration additionally makes the safe region read-only and

uses a segfault handler to mark pages writable on demand. Finally, the fourth

con�guration includes dynamic analysis results, removing the need to hot-patch

previously veri�ed vcalls at runtime. Figure 4.6 shows that the majority of vps’s

overhead stems from object initializations and virtual callsite instrumentation.

Overall, with a performance overhead of 9% for SPEC CPU2006 and 11% for

SPEC CPU2017 (geometric means), vps shows that binary-level CFIXX is possible

with moderate performance impact.

4.10 Discussion

This section �rst discusses the susceptibility of vps to Counterfeit Object-oriented

Programming [120]. Following this, we discuss the limitations of vps.

4.10.1 Counterfeit Object-Oriented Programming

CFI approaches targeting C++ must cope with advanced attackers using Coun-

terfeit Object-oriented Programming (COOP) attacks [39, 120]. This attack class

thwarts defenses that do not accurately model C++ semantics. As we argue be-

low, vps reduces the attack surface su�ciently that practical COOP attacks are

infeasible.

For a successful COOP attack, an attacker must control a container �lled with

objects, with a loop invoking a virtual function on each object. The loop may be

an actual loop, called a main loop gadget, or can be achieved through recursion,

called a recursion gadget. We refer to both types as loop gadget. The attacker

places counterfeit objects in the container, allowing them to hijack control �ow

when the loop executes each object’s virtual function. To pass data between the

objects, the attacker can overlap the objects’ �elds.

The �rst restriction vps imposes on an attacker is that it prevents �lling the

container with counterfeit objects; because the objects were not created at le-

gitimate object creation sites, the safe memory does not contain stored vtblptrs
for them. Only two conceivable ways would allow an attacker to craft a con-

tainer of counterfeit objects under vps: either the application allows attackers to

arbitrarily invoke constructors and create objects, or the attacker can coax the

application into creating all objects needed for an attack through legitimate be-

havior. The former occurs (in restricted form) only in applications with scripting

capabilities. The latter scenario, besides requiring an cooperative victim appli-

cation, hinges on the attacker’s ability to scan data memory to �nd all needed

i
i

i
i

i
i

i
i

4.10. DISCUSSION

V
PS

113

objects without crashing the application (hence losing the created objects) and

�lling the container with pointers to these.

The second restriction vps imposes is that it prohibits overlapping objects

(used for data transfer in COOP) because objects can only be created through

legitimate constructors. This means that a would-be COOP attack would have

to pass data via argument registers or via a scratch memory area instead. Data

passing via argument registers works only if the loop gadget does not modify the

argument registers between gadget invocations. Additionally, the virtual func-

tions used as gadgets must leave their results in precisely the correct argument

registers when they return. Passing data via scratch memory limits the attack

to the use of virtual functions that work on memory areas. The pointer to the

scratch memory area must then be passed to the virtual function gadgets either

via an argument register (subject to the limitations of passing data via argument

registers), or via a �eld in the object. To use a �eld in the object as a pointer to

scratch memory, the attacker must overwrite that �eld prior to the attack, which

could lead to a crash if the application tries to use the modi�ed object.

As a third restriction, vps’s checks of the vtblptr at each vcall instruction

mean that the attacker is limited in the virtual functions they can use at a loop
gadget. Only the virtual function at the speci�c vtable o�set used by the vcall

is allowed; attackers cannot “shift” vtables to invoke alternative entries. This

security policy is comparable to vfGuard [110].

To summarize, vps restricts three crucial COOP components: object creation,

data transfer, and loop gadget selection. Because all proof-of-concept exploits by

Schuster et al. [120] rely on object overlapping as a means of transferring data,

vps successfully prevents them. Moreover, Schuster et al. recognize vfGuard as a

signi�cant constraint for an attacker performing a COOP attack. Given that vps

raises the bar even more than vfGuard, we argue that vps makes practical COOP

attacks infeasible.

We found that multiple of the virtual callsites missed by VTV (as shown in

Section 4.9.1) reside in a loop in a destructor function (similar to the main loop
gadget example used by Schuster et al. [120]). Because the loop iterates over

a container of objects and uses a virtual call on each object, COOP attacks can

leverage these missed callsites as a main loop gadget even with VTV enabled.

This demonstrates the need for defense-in-depth, with multiple hurdles for an

attacker to cross in case of inaccuracies in the analysis.

i
i

i
i

i
i

i
i

114 CHAPTER 4. VPS

4.10.2 Limitations

At the moment, our proof-of-concept implementation of the instrumentation ig-

nores object deletion because it does not a�ect the consistency of the safe mem-

ory. As a result, when an object is deleted, its old vtblptr is still stored in safe

memory. If an attacker manages to control the memory of the deleted object,

they can craft a new object that uses the same vtable as the original object. Be-

cause the vtblptr remains unchanged, this attack is analogous to corrupting an

object’s �elds and does not allow the attacker to hijack control �ow. Thus, while

our approach does not completely prevent use-after-free attacks, it restricts them

by forcing an attacker to re-use the type of the object previously stored in the

attacked memory region.

Another limitation of our approach lies in the runtime veri�cation of can-

didate vcall sites. If an attacker uses an unveri�ed vcall instruction, they can

force the analysis instrumentation to detect a “false-positive” vcall and remove

the security instrumentation for this instruction, leaving the vcall unprotected.

Because we cache analysis results, this attack only works for vcall sites that are

unveri�ed in the static analysis and have never been executed before in any run

of the program, leading to a race condition between the analysis instrumenta-

tion and the attacker. The only way to mitigate this issue is by improving cover-

age during the dynamic pro�ling analysis and therefore reducing the number

of unveri�ed vcalls. This is possible by running test cases for the protected

program or through techniques such as fuzzing [201, 113]. Note also that this

attack requires speci�c knowledge of an unveri�ed vcall instruction; if the at-

tacker guesses wrong and attacks a known vcall, we detect the attack and log it

for investigation.

vps inherits some limitations from Dyninst, such as Dyninst’s inability to in-

strument functions that catch or throw C++ exceptions, and Dyninst’s inability to

instrument functions for which it fails to reconstruct a CFG. These limitations are

not fundamental to vps and can be resolved with additional engineering e�ort.

Finally, we note that it is possible to enhance our safe memory region imple-

mentation, for example by using upcoming hardware features such as Memory

Protection Keys (MPK) [192]. Because the safe region is merely a building block

for vps, we consider improvements to safe memory an orthogonal topic and do

not explore it further in this work.

i
i

i
i

i
i

i
i

4.11. CONCLUSION

V
PS

115

4.11 Conclusion

In this chapter, we presented vps, a practical binary-level defense mechanism

against C++ vtable hijacking attacks. Unlike prior work that restricts the target

set of virtual callsites, our approach protects objects at creation time and restricts

their usage to virtual calls that are reachable by the object. This sidesteps accu-

racy problems faced by prior work while simultaneously extending the threat

model to include use-after-free attacks. Moreover, vps provides improved cor-

rectness guarantees by handling false positives at vcall veri�cation time. Our

evaluation shows that vps precisely protects applications from modern C++ code-

reuse attacks, including whole-function reuse. Our analysis for detecting virtual

callsites in binaries uncovered inaccuracies in VTV, a source-based approach that

is commonly used as ground truth in this research area and broadly considered

the state-of-the-art for C++-based defenses. We reported these issues to the VTV

maintainers. To support future work on binary analysis (e.g., techniques for ex-

tracting higher-level programming language features from legacy binaries) and

advanced mitigation techniques, we will release our analysis framework and in-

strumentation code.

Shared Authorship

I share authorship on vps with Andre Pawlowski from Ruhr-University Bochum,

Germany. Andre is �rst author of the paper that is under review and the sole

author of the static analysis framework. I relied on Andre’s static analysis re-

sults to (1) implement the runtime component, and (2) execute our performance

evaluation.

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

N
EW

TO
N

5 The Dynamics of
Innocent Flesh on the
Bone: Code Reuse Ten
Years Later

In 2007, Shacham published a seminal paper on Return-Oriented Programming

(ROP), the �rst systematic formulation of code reuse. The paper has been highly

in�uential, profoundly shaping the way we still think about code reuse today:

an attacker analyzes the “geometry” of victim binary code to locate gadgets and

chains these to craft an exploit. This model has spurred much research, with a

rapid progression of increasingly sophisticated code reuse attacks and defenses

over time. After ten years, the common perception is that state-of-the-art code

reuse defenses are e�ective in signi�cantly raising the bar and making attacks

exceedingly hard.

In this chapter, we show that an attacker going beyond “geometry” (static

analysis) and considering the “dynamics” (dynamic analysis) of a victim pro-

gram can easily �nd function call gadgets even in the presence of state-of-the-

art code-reuse defenses. To support our claims, we present Newton, a runtime

gadget-discovery framework based on constraint-driven dynamic taint analysis.

Newton can model a broad range of defenses by mapping their properties into

simple, stackable, reusable constraints, and automatically generate gadgets that

comply with these constraints. Using Newton, we systematically map and com-

pare state-of-the-art defenses, demonstrating that even simple interactions with

popular server programs are adequate for �nding gadgets for all state-of-the-art

code-reuse defenses. We conclude with an nginx case study, which shows that a

Newton-enabled attacker can craft attacks which comply with the restrictions

of advanced defenses, such as CPI and context-sensitive CFI.

117

i
i

i
i

i
i

i
i

118 CHAPTER 5. NEWTON

5.1 Introduction

Ever since the advent of Return-Oriented Programming (ROP) [124], a substan-

tial amount of research has explored code reuse attacks in depth. Starting from a

relatively simple scheme where return instructions served to link together snip-

pets of existing code (gadgets), the code reuse concept was quickly generalized

to include forward edges such as indirect calls and jumps [17, 120], and even

signal handling [18]. Not surprisingly, defenses kept pace with the attack tech-

niques, and a myriad of increasingly advanced attacks [25, 49, 57, 116] was met by

equally advanced defenses. Some of these defenses work by constraining control

transfers to a speci�c set of legal �ows [2, 130, 131, 135], while others complicate

attacks by making it di�cult to �nd reusable code snippets [9, 10, 14, 21, 38, 39,

89, 129]. Yet other defenses protect a program by ensuring the integrity of code

pointers [83, 90, 92].

In principle, exploitation may still be possible even in the presence of these

defenses; for instance, through implementation issues [26, 48]. However, in prac-

tice, code-reuse attacks on a system with state-of-the-art defenses are extremely

challenging. Such attacks require an attacker to analyze the protected program to

�nd available defense-speci�c gadgets that can be used to implement the desired

malicious payload. Crucially, the literature on code reuse attacks has thus far fo-

cused on the threat model introduced in Shacham’s original work on ROP [124],

which is based on (manual or automatic) static analysis. This is an important

observation, because modern defenses reduce the set of available gadgets to the

point that �nding a su�cient set of gadgets for an exploit stretches the abilities

of even the most advanced static analysis techniques. In this chapter, we intro-

duce a novel approach for constructing code reuse attacks even in the presence of

modern defenses. The key insight is that the required analysis e�ort to construct

an attack can be greatly reduced and scale across a broad range of defenses by

using dynamic analysis techniques instead of only static analysis.

Static flesh on the bone The original paper introducing Return-Oriented Pro-

gramming appeared at CCS in 2007 [124], and demonstrated the �rst general for-

mulation of a code-reuse attack. With ROP, an attacker would use static analysis

to scan the binary for useful snippets of code that ended with a return instruc-

tion. Out of these code snippets, known as gadgets, the attacker would construct

a malicious payload and link them by means of the return instructions at the end

of the gadgets. By injecting the appropriate return addresses on the stack of a

vulnerable program, an attacker could craft arbitrary functionality.

i
i

i
i

i
i

i
i

5.1. INTRODUCTION

N
EW

TO
N

119

All code-reuse techniques since have followed this same basic approach—

using static analysis to �rst identify which gadgets are available, and then con-

structing a malicious payload out of them. This is true even for advanced ex-

ploitation that performs such analysis “just in time” [126].

Modern code-reuse defenses push such attacks to their limits and the analysis

required to bypass them is now highly sophisticated [116, 120]. In the absence

of implementation errors or side channels, an attacker would be hard-pressed to

locate the gadgets, let alone stitch them together. In other words, state-of-the-art

defenses have been successful in raising the bar: they may not stop all possible

attacks, but they make them exceedingly di�cult.

Beyond static analysis The key assumption for the e�ectiveness of current

defenses is that future attacks follow essentially the same—static analysis-based—

approach as proposed by Shacham in 2007. In this chapter, we challenge this

assumption, demonstrating that a switch of attack tactics to include dynamic

analysis renders current defenses far less e�ective and attacks far less laborious.

In reality, attackers do not care about gadgets or ROP chains—all they want is to

execute a sensitive call such as execve or mprotect with arguments they control.

There is no reason to assume that they would limit themselves to static analysis.

The goal of modern defenses is to prevent attackers from subverting a pro-

gram’s control �ow to reach a desired target, even if an attacker is able to read

or write arbitrary data. The question that the attackers must answer is which

memory values they should modify to gain control over the program. Ideally,

they would answer this question without resorting to complex static analysis.

The key insight in this chapter is that we can model such an attacker’s capabil-

ities by means of dynamic taint analysis. In particular, we taint all bytes that an

attacker can modify with a unique color and then track the �ow of taint until we

reach code that, given the right values for the tainted bytes, allows the attacker

to launch a code-reuse attack. For instance, if a tainted code pointer and a tainted

integer later �ow into an indirect call target and its argument (respectively), we

have concrete evidence that the attacker can fully control a particular call instruc-

tion “gadget”. Shacham’s original static analysis tool is named Galileo, a play on

its use of “geometry”. Since our approach is largely based on dynamic (“dynam-
ics”) rather than static (“geometry”) analysis, we refer to our gadget-discovery

framework as Newton.

As we shall see, our approach requires an attacker to simply run the victim

process with Newton’s dynamic analysis enabled. Moreover, our approach can

easily emulate common constraints imposed by modern defenses against code

i
i

i
i

i
i

i
i

120 CHAPTER 5. NEWTON

reuse. Depending on the defense, we may be able to corrupt some locations

(but not others) and target some functions (but not others). As detailed later,

we can map these per-defense restrictions to simple and stackable constraints

(e.g., tainting policies) for our analysis. Moreover, an attacker may model such

constraints once and reuse them across a wide variety of defenses and victim

applications.

Contributions We can summarize the contributions of this chapter as follows:

• We show that a hybrid static/dynamic attacker model signi�cantly lowers

the bar for mounting code-reuse attacks against state-of-the-art defenses.

• We implementNewton, a novel framework for generating low-e�ort code-

reuse attacks using constraint-driven dynamic taint analysis.

• We evaluate and compare existing defenses against code reuse, highlight-

ing their respective strengths and weaknesses using constraints in New-

ton.

• We present an nginx case study to demonstrate how to use Newton to

craft code reuse attacks against advanced defenses, such as secure imple-

mentations of CPI [83]
1

and context-sensitive CFI [131]
2
.

5.2 Threat Model

We consider a code-reuse attacker armed with arbitrary memory read and write

primitives based on memory corruption vulnerabilities (e.g., CVE-2013-2028 for

nginx and CVE-2014-0226 for Apache), similarly to recent work [38, 90, 100, 116,

123]. We focus on a low-e�ort attacker, relying on such primitives and auto-

matic gadget-discovery tools to craft attacks with limited application knowledge.

Our attacker seeks to locate gadgets and mount code-reuse attacks, even in the

face of state-of-the-art defenses such as Control-Flow Integrity (CFI) [130, 131,

135], leakage-resistant code randomization [21, 38], and Code-Pointer Integrity

(CPI) [83]. We focus speci�cally on lightweight code-reuse defenses and leave

1
We focus on the published implementation of CPI, which, as we veri�ed, features no temporal checks

and no read-side bounds checks. The authors of CPI informed us that the latter, which we had assumed to

be an optimization, is really an implementation bug. Unfortunately, adding such expensive bounds and

temporal checks to approximate full memory safety will non-trivially increase the CPI overhead. For this

reason, we consider the e�cient published implementation a more interesting and concrete design point to

analyze as of today.

2
We consider context-sensitive CFI (CsCFI) and context-insensitive CFI separately and, with CsCFI, we

exclusively refer to stateful CFI policies based on execution history.

i
i

i
i

i
i

i
i

5.3. OVERVIEW OF CODE-REUSE DEFENSES

N
EW

TO
N

121

more general heavyweight defenses such as memory safety [93, 94] or Multi-

Variant Execution (MVX) [78, 168] out of scope.

Given the overwhelming number of code-reuse defenses in the literature, we

limit our analysis to only (1) defenses applicable to general programs (e.g., no

vtable protection for C++ programs [130]), (2) the strongest designs in each class

(i.e., e�ectiveness against weaker defenses is implied), and (3) the secure imple-

mentation of such designs (e.g., no side-channel [48, 100] or weak-context [26]

bypasses). We also assume a strong baseline with ASLR [209], DEP [185], a per-

fect shadow stack [41] (making it impossible to divert control-�ow by modifying

return addresses), and coarse-grained forward-edge CFI [157] (callsites can only

target function entry points) enabled.

We assume that the attacker has access to a binary equivalent to the one

deployed by his prospective victim. Finally, for simplicity, we focus speci�cally

on popular server programs, similar to much prior work in the area [15, 90, 99,

100, 116, 123, 131, 135].

5.3 Overview of Code-Reuse Defenses

In this section, we provide an overview of state-of-the-art code-reuse defenses

considered in our threat model. We distinguish four classes of code-reuse de-

fenses: (1) Control-Flow Integrity, (2) Information Hiding, (3) Re-randomization,

and (4) Pointer Integrity. We now introduce each of these classes in turn, and

later show how to map them to Newton constraints in Section 5.5.

Control-flow integrity (forward-edge) Control-Flow Integrity (CFI) mitigates

code-reuse attacks by instrumenting indirect callsites to ensure that only legal

targets allowed by the (inter-procedural) Control Flow Graph (CFG) of the pro-

gram are permitted [2]. To determine the targets for each callsite, modern CFI

solutions use either static or dynamic information.

CFI solutions that rely only on static information either allow callsites to tar-

get all function entry points [154, 157] or, more recently, construct the set of

legal targets by mapping callsite types to target function types. In other words,

a callsite of the form foo(struct bar *p) should only call functions of type

func(struct bar *p). In particular, IFCC [130] and MCFI [97] construct such

mappings using source type information, while TypeArmor [135] approximates

types based on argument count at the binary level.

CFI solutions that rely on dynamic information track execution state to im-

prove the accuracy of static analysis. In particular, PICFI [99] implements a

i
i

i
i

i
i

i
i

122 CHAPTER 5. NEWTON

“history-based CFI” (HCFI) policy, restricting the target set to function targets

whose address has been computed at runtime. Context-sensitive CFI (CsCFI) solu-

tions (or similar, with di�erent de�nitions of “context”) such as PathArmor [131],

GRIFFIN [52], FlowGuard [88], kBouncer [102], and ROPecker [30] restrict the

target set based on analysis of the last n branches recorded by hardware, e.g.,

the Last Branch Record (LBR) registers or Intel PT. The e�ectiveness depends on

the amount of useful “context” in the branch history, which is necessarily lim-

ited in practical implementations: 16 or 32 LBR entries [30, 102, 131], 30 Intel PT

packets [88], or a limited policy matrix [52].

Information hiding Information hiding (IH) aims to prevent code reuse by

making the locations of gadgets unknown to an attacker. This is done by (1)

diversifying the code layout using traditional Address-Space Layout Randomiza-

tion (ASLR) [209] or more �ne-grained variants [10, 12, 13, 21, 28, 164, 37–39,

54, 56, 62, 63, 75, 81, 101, 128, 142] and (2) “hiding” code pointers to an arbitrary

memory read-enabled attacker. The latter property is enforced in di�erent ways

by di�erent leakage-resistant randomization solutions.

Oxymoron [10] removes all the code references from the code, preventing

an attacker reading any given code page from gathering new code pointers that

reveal the location of other code pages. Other solutions such as Readactor [38],

software-based XnR [9], HideM [55], LR
2

[21], KHide [54], kRˆX [109], Heisen-

byte [129], and NEAR [143] implement eXecute-Only Memory (XoM) or similar

semantics for code pages, preventing an attacker from reading useful gadgets

from the code and thus fully “hiding” the code layout (in the ideal case). Finally,

recent solutions such as Readactor++ [39] and CodeArmor [28] extend XoM se-

mantics (XoM++) to also hide code pointer tables such as the Global O�set Table

(GOT).

Re-randomization Re-randomization (RR) is another popular defense strategy

against code reuse attacks. Unlike information hiding, re-randomization solu-

tions seek to re-randomize and invalidate leaked information (ideally) before the

attacker has a chance to use it and craft just-in-time code reuse attacks [126].

Existing solutions can be classi�ed based on the particular information they pe-

riodically re-randomize during the execution.

Some RR solutions such as Shu�er [144], CodeArmor [28], and ReRanz [140]

periodically re-randomize the code layout (CodeRR) but leave the function pointer

values stored in data pages (heap, stack, etc.) immutable using indirection ta-

bles. In contrast, TASR [14] re-randomizes each code pointer value in memory

i
i

i
i

i
i

i
i

5.4. OVERVIEW OF Newton

N
EW

TO
N

123

every time the corresponding code target is re-randomized. Finally, other solu-

tions such as ASR3 [56] and RuntimeASLR [89] re-randomize the full memory

address space layout, including the values of code and data pointers at each re-

randomization period.

Pointer integrity Pointer integrity (PI) solutions seek to counter code reuse

by preventing attackers from tampering with code or data pointers. Existing

solutions can be classi�ed as encryption-based or isolation-based.

ASLRguard [90] is an encryption-based solution that encrypts each computed

code pointer with a per-pointer key in a safe vault, (ideally) preventing attackers

from crafting new code pointers in memory. In contrast, CCFI [92] encrypts each

code pointer stored into a given memory address with an address-dependent key,

also preventing attackers from reusing leaked code pointers in memory.

CPS [83] is an isolation-based solution that isolates all the code pointers in

a protected safe region, (ideally) preventing an attacker from reaching and cor-

rupting any of these pointers. CPI [83] extends CPS to also isolate data pointers

that may indirectly be used by the program to access code pointers, (ideally) pre-

venting an attacker from corrupting code and related data pointers in memory.

5.4 Overview of Newton

We now present Newton, our gadget-discovery framework to assist in crafting

code-reuse attacks against arbitrary (modeled) defenses. For this purpose, New-

ton applies a uniform and blackbox strategy to dynamically retrieve gadgets as

a set of attacker-controllable forward CFG edges. Each edge is expressed as a call-

site with a number of possible target functions, and tagged with a number of

dependencies (e.g., the target function is controlled by the code pointer stored at

address X and the �rst argument is controlled by address Y). These edges can

then be inspected by an attacker and used to call arbitrary functions via arbitrary

memory read/write primitives. To call a sequence of arbitrary functions, an at-

tacker can chain a number of such edges together over multiple interactions with

the victim application.

To support a range of code-reuse defenses, Newton accepts user-de�ned con-

straints that limit the analysis to only gadgets allowed by the given modeled de-

fense. The idea is to run the victim program mimicking the stages of the real

attack and constrain Newton’s dynamic gadget analysis using simple, reusable,

and extensible policies that map the security invariants of a broad range of de-

fenses. We discuss the mapping of defenses to constraints later, in Section 5.5.

i
i

i
i

i
i

i
i

124 CHAPTER 5. NEWTON

Newton

Gadgets

Static Analysis

Constraint Managers

Target Constraints Write Constraints

Binary
+

Libraries
Dynamic Analysis

Commands Command Manager

Input

MK

callsite0(svc.c:1901):
 targets:[sys.c:19, lib.c:78 ...], deps:[fptr:0xdeca..., arg0:0xfbad..., ...]

callsiteN(worker.c:111):
 targets:[lib.c:20, conn.c:13 ...], deps:[fptr:0xdead..., arg0:0xbeef..., ...]

...

Figure 5.1. Design of Newton.

Figure 5.1 presents an overview of Newton and its high-level components.

TheNewton framework pushes the victim binary and its shared libraries through

a pipeline of (1) static analysis, and (2) dynamic analysis—on top of a dynamic
taint analysis (DTA) engine. During both phases, the target and write constraint

managers apply user-de�ned constraints to the analysis, eventually yielding a

list of callsites an attacker can control and, for each callsite, a list of callees an

attacker can target under a given defense (or combination of defenses) regime.

In more detail, the work�ow of Newton when analyzing a binary to craft a

code reuse attack is as follows.

1. At the start of the analysis process, the user starts the target application

binary normally. At this point, Newton is in a waiting state, and does not

yet perform any analysis.

2. The user now brings the application into a stable state where they can ef-

fect arbitrary memory read/write primitives. In our evaluation, we assume

i
i

i
i

i
i

i
i

5.4. OVERVIEW OF Newton

N
EW

TO
N

125

that the user brings the victim program into a simple quiescent state. For

instance, in the case of a server application, the user would perform a min-

imal set of interactions to bring the server into an idle state with an open

connection, where only long-lived data persists in memory, as in [100]. In

general, the chosen quiescent state is program-dependent.

3. Next, the user signalsNewton that the victim application is now in a quies-

cent state. At this point, Newton begins tracking user-controlled memory

dependencies using its DTA engine.

4. At the same time, the user supplies Newton with a number of commands

(in a script) to specify the target and write constraints that Newton should

assume are used to defend the victim application. As a result, Newton will

take these constraints into account during its analysis of controllable edges.

5. The user now interacts with the victim application, using the inputs they

want to use during the �nal exploit. This allows Newton to track the

dependencies during these interactions. Focusing on a low-e�ort attacker

targeting a server application, we assume that the interactions amount to

simple standard requests to the victim server.

6. Finally, Newton reports the results of its analysis. This yields a set of

gadgets (callsites+targets) that are under the user’s control given the user’s

chosen defense model, initial quiescent state and set of server interactions.

5.4.1 Constraints

As de�ned by our threat model, our goal as an attacker is to use an arbitrary

memory read/write primitive to divert control �ow. The baseline defenses de-

scribed in Section 5.2 force us to achieve this by corrupting memory in such a

way that later in the execution, the target of an indirect callsite no longer points

to its intended callee. With this in mind we observe that, conceptually, all exist-

ing defenses attempt to avert successful attacks by enforcing constraints along

one (or both) of the following two dimensions:

1. Write constraints. Write constraints limit an attacker’s capability to cor-

rupt writable memory. Without any defense deployed, an attacker can cor-

rupt anything: (1) pointers to code (function pointers), (2) pointers to data,

and (3) non-pointer values such as integers or strings.

2. Target constraints. Constraints on targets limit the attacker in his selec-

tion for possible callees of a controlled callsite. Without any target con-

i
i

i
i

i
i

i
i

126 CHAPTER 5. NEWTON

straints beyond the baseline, the target set always consists of all functions

in the program and library code. We show later how di�erent defenses and

their constraints reduce the wiggle room for an attacker.

5.4.2 Write Constraint Manager

The write constraint manager accepts user-de�ned constraints, describing the

memory regions the attacker is allowed to overwrite under the modeled defense.

Then, using constraint-driven dynamic taint analysis, it pinpoints callsites and

arguments which can still be controlled by the attacker, despite the assumed

defenses. Newton’s DTA engine is a heavily modi�ed version of libdft [74]

which supports arbitrary tags per memory location, as well as additional func-

tionality to support the command manager API (see Section 5.4.4). The steps of

the analysis are as following:

1. Initial tainting. We model attacker-controlled memory by initially mark-

ing regions under the attacker’s control as tainted. To easily model di�er-

ent defenses, Newton exposes taint limiting commands that allow control

over how the initial taint is applied (see Section 5.4.4). Newton’s DTA

engine propagates the taint information to callsites and arguments.

2. Tracking dependencies. We con�gure our taint engine with a unique tag

for each byte in memory, allowing us to track attacker-controlled memory

dependencies at byte granularity. Our dynamic taint analysis engine is ca-

pable of tracking the taint source address for each tainted value or pointer

in memory. For each tainted byte, this tells us exactly by which memory

addresses it was tainted. This allows us to track, when a tainted callsite is

discovered, where the taint originated for the associated function pointer

and each of the arguments. The source of the taint is then a candidate value

for the attacker to corrupt, to control the callsite and mount a code-reuse

attack.

libdft’s original implementation implements a basic taint strategy [74],

able to track only direct attacker-controlled memory dependencies (i.e.,

callsite X uses code pointer at tainted address Y) and not indirect ones

(i.e., callsite X ′ uses code pointer read via data pointer at tainted address

Y ′). To support the latter, we implemented pointer tainting for memory

reads in libdft [74] (i.e., taint every value read via a tainted pointer), al-

lowing us to model an attacker corrupting data pointers and non-pointers

to indirectly control code pointers (and arguments) used by tainted call-

sites.

i
i

i
i

i
i

i
i

5.4. OVERVIEW OF Newton

N
EW

TO
N

127

3. Logging. When an indirect call is executed, Newton logs the relevant

taint information for this callsite. Speci�cally, for each tainted callsite, we

emit information detailing the taint dependencies for the callsite’s target,

and the �rst six arguments.

5.4.3 Target Constraint Manager

Like the write constraint manager, the target constraint manager models con-

straints imposed by code reuse defenses. It uses static and dynamic analysis to

extract callsite and callee information, which it then uses to impose the user-

de�ned constraint policy.

Static analysis We use a static analysis based on DWARF debugging symbols

to extract all callsites and potential callees from the target binary and shared

libraries, along with associated type information. Newton uses the extracted

information (if instructed) to simulate a number of policies for existing defenses,

such as type-based CFI [97, 130, 135].

Dynamic analysis In addition to the aforementioned static analysis, we also

use dynamic analysis to scan user-de�ned ranges of writable memory (such as

.data, or the heap) for code pointers. We de�ne a live code page as a memory

page pointed to by a live code pointer, i.e., a code pointer stored in live data mem-

ory that can be leaked and overwritten. Our dynamic analysis allows us to track

live code pointers and code pages. We use this information to model target con-

straints imposed by defenses such as Readactor [38], which limit an attacker to

using “live” gadgets in memory.

The target constraint manager logs the valid targets for each callsite based

on the constraints derived by the static and dynamic analysis, as guided by the

user-de�ned script modeling the defense.

5.4.4 Command Manager

As mentioned, Newton includes write constraint and target constraint managers

which model the constraints imposed by a particular defense, based on a user-

de�ned script. To handle the scripting commands, Newton includes a command
manager. The command manager is a preloaded library that loads along with

the analyzed binary, and listens for commands on a Unix domain socket. When a

command is received, the command manager dispatches it to the right constraint

manager, which handles it as needed.

i
i

i
i

i
i

i
i

128 CHAPTER 5. NEWTON

Newton exposes the following command functions, su�cient to map all of

the defenses we evaluate in Section 5.6. In Section 5.5, we show examples of

these commands used in practice to model defenses.

• taint-mem: This command instructs the taint analysis engine to mark all

writable memory as tainted, simulating the arbitrary read/write primitive

we assume in our threat model (see Section 5.2). It initializes the source

taint for each value to its own address. In Section 5.5, we show how among

other things, we use taint-mem to taint all memory after bringing a victim

server program into a quiescent state.

• taint-flip: This command untaints all tainted data, and taints all un-

tainted data. We use the ability to �ip taint when crafting history-�ushing

attacks against context-sensitive CFI defenses, as explained further in Sec-

tion 5.5.

• taint-prop-toggle: This command pauses or resumes the propagation of

taint (also implies taint-log-toggle) by Newton’s DTA engine. Default:
on.

• taint-log-toggle: Similar to taint-prop-toggle, this command pauses

or resumes the logging of tainted callsites. This is used to avoid logging

uninteresting callsites. Taint propagation continues normally. Default: on.

• taint-ptr-toggle: This command enables or disables pointer tainting on

memory reads. Default: on.

• taint-wash (CPtr|Ptr|AddressRange): This command clears the taint

for particular memory locations: locations with code pointers, data point-

ers, or in a given address range.

• constrain-targets: This command speci�es target constraints to enforce

on tainted callsites.

• get-gadgets: This command retrieves all gadgets collected during the ex-

ecution.

5.5 Mapping Defenses

As mentioned in Section 5.4, for the purpose of �nding gadgets for code reuse

with Newton, we model the security provided by code-reuse defenses along two

axes: (1) write constraints imposed by the defense, and (2) the imposed target

i
i

i
i

i
i

i
i

5.5. MAPPING DEFENSES

N
EW

TO
N

129

Table 5.1. Mapping of code-reuse defenses to Newton constraints. Empty entries for
write/target constraints indicate that the defense imposes no write/target con-
straints, respectively.

Defense Write constr. Target constr.

Class Subclass Solutions Details Details Dynamic

CFI

TypeArmor [135] Bin types
Safe IFCC/MCFI [97, 130] Safe src types
IFCC/MCFI [97, 130] Src types
HCFI [99] 3 Computed
CsCFI [30, 52, 60, 88, 102,

131]
Segr

IH
Oxymoron [10] 3 Live +page
XoM [9, 21, 38, 54, 55, 109,

129, 143]
3 Live

XoM++ [28, 39] 3 Live ¬GOT

RR
CodeRR [28, 140, 144] 3 Live
TASR [14] ¬CPtr 3 Live
PtrRR [56, 89] ¬Ptr 3 Live

PI
ASLR-Guard [90] 3 Live
CCFI/CPS [83, 92] ¬CPtr 3 Live
CPI [83] ¬Ptr 3 Live

constraints. In this section, we map the defenses from Section 5.3 according

to these constraints. This mapping allows us to easily create scripts that teach

Newton about the constraints (security restrictions) imposed when searching

for attacker-controllable gadgets (callsites and possible targets).

5.5.1 Deriving Constraints

Table 5.1 summarizes the constraints imposed by each defense class. We now

discuss each class in detail.

Control-flow integrity We distinguish �ve subclasses within the CFI class of

defenses: (1) TypeArmor, (2) IFCC/MCFI, (3) Safe IFCC/MCFI, (4) HCFI, and (5)

CsCFI.

TypeArmor imposes target constraints which enforce that call sites can only

target functions with a type matching the call site’s type; such types are approx-

imated by statically analyzing the program binary (Bin types). Since TypeArmor

is the only defense which o�ers function type-based CFI at the binary level, it

has its own dedicated subclass in Table 5.1.

i
i

i
i

i
i

i
i

130 CHAPTER 5. NEWTON

The IFCC/MCFI subclass provides similar constraints as the TypeArmor sub-

class, except that function type information is computed at the source rather than

at the binary level. This leads to a stronger target constraint (Src types) and hence

security. This is because source information allows IFCC/MCFI to compute more

accurate type information and derive a smaller legal target set.

Safe IFCC/MCFI comprises the same defenses as the IFCC/MCFI subclass, ex-

cept that in this case the defenses run in a “safe” mode, where type information is

less strict for compatibility reasons with real-world programs—discussed in the

original IFCC paper [130]. For instance, in this mode, pointer parameters such

as int* or void* are each considered to be interchangeable with other pointer

types. This leads to a weaker target constraint (Safe src types) compared to the

non-safe variant of this subclass.

In the HCFI (history-based CFI) subclass, the set of valid targets for each call

site is determined by the set of code pointers that have been computed during the

execution. This is a dynamic target constraint (Computed), which can be used in

isolation or combined with other static target constraints.

All the CFI subclasses thus far have been modeled using target constraints.

Somewhat counter-intuitively, we model the CsCFI subclass using only write

constraints. The reason is that this makes it much easier to write a Newton

CsCFI-aware script for a low-e�ort attacker. Formulating CsCFI in terms of tar-

get constraints would require us to provide Newton with knowledge about the

context-sensitive analysis, the branch history size, and the time of validation (e.g.,

syscall time). Furthermore, when assuming a “perfect” (but practical) implemen-

tation of CsCFI, the branch history can be arbitrarily large (but not unlimited),

allowing a “perfect” context-sensitive analysis to always detect invalid targets in

the large context provided. In other words, the only way for an attacker to by-

pass the defense is to force the application to �ush the (arbitrarily large) branch

history [26] before triggering the exploit. This leaves CsCFI with no context to

constrain the controlled target set.

For this purpose, the attacker needs to (1) corrupt some segregated (indepen-

dent and stable) application state, (2) send an arbitrarily large number of idem-

potent history-�ushing inputs to the application that do not interfere with the

segregated state, (3) send the �nal input to trigger the exploit based on the seg-

regated state. This translates to a write constraint (Segr) that limits writes to the

segregated state speci�ed by the attacker. At �rst glance, identifying such state

and the history-�ushing input seems complicated. In practice, this is possible

even for a low-e�ort attacker. For example, for common server applications that

handle multiple connections in a single worker process (e.g., nginx), we can sim-

i
i

i
i

i
i

i
i

5.5. MAPPING DEFENSES

N
EW

TO
N

131

ply instruct Newton to use the connection-speci�c data of a �rst connection as

segregated state and a simple request over a second connection as the history-

�ushing input (as done in Section 5.5.2).

Information hiding We distinguish three subclasses within the IH class of de-

fenses: (1) Oxymoron, (2) XoM, and (3) XoM++.

The Oxymoron subclass allows only targets contained in live code pages. This

translates to a target constraint (Live +page) that limits the set of valid (i.e., leaked

by an attacker) targets to pages pointed to by live code pointers.

The XoM subclass contains defenses that hide the code layout from an at-

tacker. This translates to a target constraint (Live) that limits the set of valid

targets to live code pointers (again stored and then leaked from memory), given

that the attacker can make no assumptions on the other code pointers.

Finally, defenses in the XoM++ subclass implement XoM semantics and ad-

ditionally hide the GOT from an attacker. This translates to a stronger target

constraint (Live ¬GOT) than XoM’s, where live code pointers in the GOT are no

longer valid. Since the GOT itself is no longer reachable and thus not corruptible,

this also translates to a write constraint (¬GOT), which, for simplicity, we leave

implicit in our analysis and presentation of the results (its impact typically aligns

with its target constraint counterpart).

Re-randomization We distinguish three subclasses within the RR class of de-

fenses: (1) CodeRR, (2) TASR, and (3) PtrRR. Since all these subclasses hide the

code layout under ideal conditions, they all impose a target constraint that allows

only live code pointers to be used as valid targets (Live). However, the subclasses

di�er in terms of their write constraints.

First, the CodeRR subclass only hides (i.e., re-randomizes) the code layout

and imposes no additional write constraints. The second RR subclass, TASR,

does impose an additional write constraint. Not only does TASR periodically

re-randomize the code layout, but it also re-randomizes the code pointer repre-

sentation (even for code pointers stored in data memory). In doing so, it pre-

vents attackers from successfully overwriting code pointers. This translates to a

write constraint (¬CPtr) that forbids writes to memory locations containing code

pointers. In other words, this constraint teaches Newton that the only way to

�nd gadgets that bypass CodeRR is to corrupt data pointers (or non-pointers) to

force the program to access an attacker-controlled live code pointer rather than

the original intended target (e.g., corrupting c to hijack c->handler()).

Finally, the PtrRR subclass is similar to TASR, except that the imposed write

i
i

i
i

i
i

i
i

132 CHAPTER 5. NEWTON

constraint is stronger. Not only code pointers but all pointers are re-randomized

and thus “protected” against overwrites. This translates to a write constraint

(¬Ptr) that forbids writes to memory locations containing either code or data

pointers. In other words, this constraint teaches Newton that the only way to

�nd gadgets that bypass PtrRR is to corrupt non-pointers such as integers (e.g.,

corrupting idx to hijack func[idx]->handler()).

Pointer integrity We distinguish three subclasses within the PI class of de-

fenses: (1) ASLR-Guard, (2) CCFI/CPS, and (3) CPI. All three of these prevent

an attacker from crafting new code pointers from scratch, thus enforcing a tar-

get constraint that limits targets to live code pointers (Live).
ASLR-Guard does not impose any additional constraints. It implements the

aforementioned target constraint by using per-pointer secret keys to encrypt all

code pointers. Thus, while an attacker cannot introduce new code pointers, it is

still possible to replace a code pointer with another arbitrary live code pointer,

given that the secret key is not location-aware.

The second PI subclass, CCFI/CPS, does impose an additional write constraint

that forbids writes to memory locations containing code pointers (¬CPtr). In the

case of CCFI (Cryptographically-enhanced CFI), this is implemented by encrypt-

ing pointers with a memory location-dependent key. In the case of CPS, the same

e�ect is achieved by isolating code pointers in a memory region not accessible

to an attacker.

Finally, CPI is equivalent to CPS, except that it isolates not only code pointers,

but also data pointers that point to structures containing code pointers. Thus,

CPI imposes a stronger write constraint than CPS, forbidding writes to memory

locations containing either code or data pointers (¬Ptr).

5.5.2 Implementation

Figure 5.2 graphically depicts the constraints imposed by the defenses, as detailed

in Table 5.1. The x-axis shows the write constraints imposed by each defense

subclass, while the y-axis shows the target constraints. Defenses that share both

the same write and target constraints impose equivalent security restrictions, so

that each (x, y) point in Figure 5.2 forms an equivalence class.
It is interesting to note that even defenses that seem quite di�erent on the

surface actually turn out to o�er comparable guarantees. For instance, the �g-

ure reveals the following equivalence classes that contain multiple defense tech-

niques each: {XoM,CodeRR,ASLR − Guard}, {TASR,CCFI/CPS},
and {PtrRR,CPI}. Note that these equivalences hold only when assuming

i
i

i
i

i
i

i
i

5.5. MAPPING DEFENSES

N
EW

TO
N

133

Non
eLiv

e +p
ag

eBin
ty

pe
sCom

pu
ted
Liv

e
Liv

e ¬
GOT

Sa
fe

src
ty

pe
sSr

c ty
pe

s

None ¬Cptr ¬Ptr Segr

Ta
rg

et
C

on
st

ra
in

t

Write Constraint

Control Flow Integrity (CFI)
Information Hiding (IH)
Re-Randomization (RR)
Pointer Integrity (PI)

TypeArmor

SafeIFCC/MCFI

IFCC/MCFI

HCFI

CsCFI

Oxymoron

XoM

XoM++

CodeRR TASR PtrRR
ASLR-Guard CCFI/CPS CPI

Figure 5.2. Mapping of defense classes to write (x-axis) and target (y-axis) constraints in
Newton. Constraints on the two axes are sorted based on their e�ectiveness in
reducing the number of gadgets available to a low-e�ort a�acker on nginx, when
sending a plain HTTP GET request.

“perfect” implementations of each defense, without any implementation-speci�c

vulnerabilities. In addition, our constraint-based classi�cation abstracts away

implementation details and hence ignores implementation-speci�c di�erences

across defenses. For instance, the ¬Ptr constraint in RuntimeASLR protects all

data pointers, and could thus be considered stronger than the same constraint

in CPI, which protects only data pointers that can be used to read code pointers.

The key advantage of our approach is that it allows us to focus on the general

constraints for gadget generation across many di�erent defenses.

We now demonstrate how to concretely implement constraints for the mapped

defenses in Newton, using the commands detailed in Section 5.4. We organize

the following discussion around the write constraints imposed by each defense.

Corrupting code pointers All defense subclasses that do not implement write

constraints allow any memory to be corrupted, including code pointers. These

defenses are on the left of the x-axis in Figure 5.2 (None). To model these, we use

the Newton script from Figure 5.4a. All our example scripts assume a low-e�ort

attacker attacking a server application. After starting the server, the script �rst

informs Newton about any target constraints; this guides Newton’s static and

dynamic analysis of callees and live code pointers. Newton has internal support

for each of the possible target constraints shown in Table 5.1 and Figure 5.2.

i
i

i
i

i
i

i
i

134 CHAPTER 5. NEWTON

1 $ start server
2 constrain-targets $Cons
3 $ C1 = open connection
4 taint-mem
5 $ send request over C1
6 get-gadgets
7

(a) No write constraints.

1 $ start server
2 constrain-targets $Cons
3 $ C1 = open connection
4 taint-mem
5 taint-wash CPtr
6 $ send request over C1
7 get-gadgets

(b) ¬CPtr.

1 $ start server
2 constrain-targets $Cons
3 $ C1 = open connection
4 taint-mem
5 taint-wash Ptr
6 $ send request over C1
7 get-gadgets
8

9

10

11

(c) ¬Ptr.

1 $ start server
2 constrain-targets $Cons
3 taint-prop-toggle off
4 taint-mem
5 $ C1 = open connection
6 taint-flip
7 $ C2 = open connection
8 $ send N requests over C2
9 taint-prop-toggle on

10 $ send request over C1
11 get-gadgets

(d) Segr.

Figure 5.3. Newton command scripts for finding gadgets under di�erent modeled write
constraints.

Next, the script taints all memory using the taint-mem command. We then

send a normal request to the server, causing Newton to track any taint prop-

agated during this request. As the request is processed, Newton logs tainted

callsites, their arguments, dependencies, and potential targets. These gadgets

can then later be retrieved by the user (get-gadgets command).

Corrupting data pointers Defense subclasses with the ¬CPtr write constraint

prevent code pointers from being overwritten, but do not protect other memory

locations. This includes the CCFI/CPS and TASR subclasses. As a result, under

these defenses, it is still possible to corrupt data pointers and non-pointers.

We model these defenses in Newton using the script shown in Figure 5.4b.

The script is identical to the script we used to model defenses without any write

constraints, except that after tainting all memory, we use the taint-wash com-

mand to untaint code pointers. This has the result of simulating that code point-

ers are not overwritable by an attacker, thus modeling defenses in the ¬CPtr

write constraint class.

i
i

i
i

i
i

i
i

5.5. MAPPING DEFENSES

N
EW

TO
N

135

Corrupting non-pointers Under defenses that implement the ¬Ptr write con-

straint, neither code nor data pointers can be written, limiting the attacker to

overwriting only non-pointers. We simulate this using the script shown in Fig-

ure 5.4c, in which we clear the taint for both code and data pointers after tainting

memory.

Corrupting segregated state As mentioned in Section 5.5.1, we model the

CsCFI subclass using write constraints instead of target constraints, as this makes

CsCFI easier to emulate in Newton. As described earlier, the write constraints

impose a “segregated memory” defense model, in which an attacker corrupts pro-

gram state in such a way that this state is not modi�ed by subsequent history-

�ushing requests. The attacker then uses an arbitrary number of these requests

to �ush the context of the CsCFI defense, after which it becomes possible to use

the previously corrupted state to trigger an exploit.

We model this in Newton using the script shown in Figure 5.4d. The script

begins by starting the victim server and setting the target constraints, as usual.

Next, we disable taint propagation, after which we taint all memory and open

an attack connection (c1), and �nally �ip the taint state of all memory. Opening

the connection has the e�ect of clearing taint on the memory touched by the

connection state. Thus, when we �ip the taint state, the untainted memory (con-

taining the connection state) becomes tainted, while all other memory becomes

untainted. This way, we model the initial segregated (connection) state, which

will serve as the attack surface in the �nal exploit. Note that the segregated state

is not an idle state as our attack connection is still open, and that there are pos-

sibly many more active open connections in parallel.

We now send an arbitrary number of idempotent requests to the server over

an independent history-�ushing connection c2. This is to model �ushing the

CsCFI context and also ensure there is no interference with the state of connec-

tion c2. Finally, we re-enable taint propagation, resume the attack connection c1
(left open previously), and send the �nal request. The �nal result of the analysis

is a list of callsites (with possible targets and dependencies) which are tainted

only by attacker-controlled connection-speci�c state, and are thus controllable

by the attacker after the history-�ushing attack is complete. This voids the con-

cern that some of the long-lived structures in the quiescent state may be modi�ed

by parallel connections.

i
i

i
i

i
i

i
i

136 CHAPTER 5. NEWTON

5.6 Evaluation

We evaluate Newton against three web servers (nginx, Apache’s h�pd, and

ligh�pd), a general-purpose distributed memory cache system (Memcached), an

in-memory database (Redis), and a domain name system (BIND). As is common

these days, we compile the servers as position independent code, using gcc as

our compiler.

Using Newton scripts as presented in Section 5.5.2, we instruct our target

constraint manager to apply each of the target-based policies from Section 5.5 (in

addition to the baseline as described in Section 5.2). As described there, we divide

the deployed defenses into those with static target constraints, and dynamic ones.

Also recall from Section 5.5.2 that our scripts instruct the write constraint

manager to apply the following types of write constraints: (1) None, this is our

baseline where an attacker can corrupt anything, including code pointers; (2)

¬CPtr, policies that restrict the corruption of code pointers; (3) ¬Ptr, policies

that enforce pointer integrity; and (4) Segr, for context-sensitive CFI.

We �rst perform a detailed evaluation for nginx, in which we provide statis-

tics on the controllability of each executed indirect callsite. Later, in Section 5.7,

we show how to use this information to mount defense-aware attacks against

nginx. In the second part of this evaluation, we provide summarized results for

all tested servers, to illustrate the wide applicability of our attack methodology.

Note that we do not evaluate the expressiveness of code-reuse attacks based

onNewton, i.e., we do not study whetherNewton can produce Turing-complete

attacks. The motivation behind this is that Turing-completeness neither guaran-

tees nor is a prerequisite for successful exploitation and as such does not a�ect

the applicability of Newton: an attacker is unlikely to care about �nding all

Turing-complete gadgets if only one or two already provide him with enough

means to gain arbitrary code execution. We consider a study in which existing

defenses are evaluated with respect to whether they prevent Turing-complete

ROP attacks as an interesting starting point for future work.

Although our evaluation focuses on popular system services, the principles

of Newton also apply to user applications like browsers, document readers, and

word processors. The large memory footprint of such applications, however,

means that our libdft-based DTA engine (which is 32-bit only) quickly runs

out of memory. This limitation is not fundamental to Newton, and can be ad-

dressed in future work with additional engineering e�ort (i.e., porting libdft to

x86_64).

i
i

i
i

i
i

i
i

5.6. EVALUATION

N
EW

TO
N

137

5.6.1 In-Depth Analysis of nginx

We now evaluate the controllability of each executed indirect callsite in nginx, un-

der all types of write and target constraints. We �rst examine the residual attack

surface per target constraint, and then do the same for each write constraint.

Target constraints Table 5.2 depicts the residual attack surface in nginx under

di�erent target constraints. Note that the numbers shown for dynamic target con-

straints are susceptible to the coverage of our dynamic analysis. As mentioned,

we assume a low-e�ort attacker; thus, the numbers shown in Table 5.2a and 5.2b

cover the case where the attacker sends only a simple GET request to nginx. It

is conceivable that a more determined attacker could uncover even more attack

surface than shown here.

Also note that we show absolute numbers for dynamic constraints, but me-

dian results for static constraints. This is because static target constraints limit

the number of targets per callsite, while dynamic constraints limit the total num-

ber of legal pointers in memory.

To interpret the tables, we look at one example row from each table. We be-

gin with an example from Table 5.2a. Consider the Computed target constraint,

which is used by the HCFI defense subclass, implemented by Per-Input CFI [99].

Under this constraint, only code pointers which have been computed during pro-

gram execution can be used by an attacker. Table 5.2a shows that after server ini-

tialization and handling of the GET request, 786 such pointers reside in memory.

Thus, each indirect callsite may target each of these. Continuing the Computed
target constraint example, Table 5.2b shows that of al computed pointers, 1 was

stored on the stack, and 64 on the heap. The remaining originate from the loaded

modules: 270 from nginx’ data sections (.data, .data.rel.ro, or .rodata), 32

from its global o�set tables (.got, .got.plt), and 25 pointers were found in the

remaining sections and other modules.

To explain Table 5.2c, we consider the Safe src types constraint, imposed

by the SafeIFCC/MCFI defense subclass, which provides type-based caller/callee

matching. In this, the median indirect callsite is allowed to target 176 libc func-

tions, and 376 functions in total. Each callsite may target at least 2 functions in

nginx, while 90% of the callsites may target 69 functions in modules other than

nginx or libc.

Overall, the main takeaway from Table 5.2 is the ease with which our method-

ology allows us to compare the strength of even extremely di�erent defense sub-

classes. For instance, it becomes clear that the strongest dynamic target con-

straint is Live ¬GOT, imposed by the XoM++ defense subclass. Comparing Ta-

i
i

i
i

i
i

i
i

138 CHAPTER 5. NEWTON

Table 5.2. Number of permissible targets in nginx under each target constraint policy.

(a) Absolute number of legal function targets found in the main nginx module, libc, other
modules, and in total, respectively, when applying dynamic target constraints.

Dynamic
target constraint

Targets

nginx libc other total

None 1,035 2,763 794 4,592
Live +page 811 1,264 411 2,486
Computed 363 323 100 786

Live 362 316 89 767
Live ¬GOT 360 279 69 708

(b) Location of the code pointers to legal targets when applying dynamic target constraints,
binned to the stack, heap, or .data/.got/other segments in a particular module.

Dynamic
target

constraint

Target location

stack heap
nginx libc other

data got other data got other data got other

Live +page 15 475 261 399 81 666 26 67 207 257 32
Computed 1 64 270 32 25 240 2 42 65 38 7

Live 1 64 269 31 25 237 2 41 60 31 6
Live ¬GOT 1 64 269 0 25 237 0 41 60 0 6

(c) Number of legal function targets per callsite and their distribution when applying static
target constraints. The Target (median) group shows the median number of legal function
targets found in the main nginx module, libc, other modules, and in total, respectively.
The Target distribution group shows the minimum and 90th percentile number of targets
pointing to each module, per callsite.

Static
target

constraint

Targets (median) Target distribution

nginx libc other total nginx libc other

min 90p min 90p min 90p

Bin types 328 960 370 1,665 201 758 549 1,625 203 437
Safe src types 117 176 65 376 2 135 0 230 0 69

Src types 12 0 0 19 1 58 0 0 0 0
Source 12 0 0 19 1 57 0 0 0 0

ble 5.2a and 5.2c, it is also clear that static type-based constraints are in general

stronger than dynamic ones, with the strongest target constraints being imposed

by source-level type-based defenses. It is also worth noting that even for the

strongest target constraints, there is still a signi�cant residual attack surface.

i
i

i
i

i
i

i
i

5.6. EVALUATION

N
EW

TO
N

139

Write constraints We now consider the potential controllability of callsites in

nginx given varying write constraints. Moreover, we also show that for each

executed callsite, a nontrivial attack surface remains even under the strongest

combinations of write and target constraints. To obtain information on which

callsites are potentially controllable, we examine the taint information which

Newton yields during the aforementioned attacker-initiated GET request to ng-
inx. We present these results in Table 5.3 on page 140.

To illustrate the semantics of Table 5.3, consider callsite number 27, at lo-

cation http_request.c:1126. The target (function pointer) of this callsite is

tainted by a code pointer, meaning that it can be controlled under write con-

straints which allow corrupting code pointers. Moreover, it is controllable from

segregated state, i.e., the callsite is usable in a history �ushing-based attack against

CsCFI. All three arguments are tainted by non-pointer values, making them con-

trollable even under the strictest write constraints. Controlling three arguments

is often su�cient; for instance, both execve and mprotect take only three argu-

ments (and system takes one).

Table 5.2a shows that, without any additional target constraints, the callsite at

location http_request.c:1126 has 4,592 legal targets. Imposing the strongest

dynamic target constraint (Live ¬GOT) reduces this to 708 targets, while the

strongest static target constraint (Source types) allows only 3 targets; the same

number of targets as is allowed under the combination of these write constraints.

Note in Table 5.3 that 13 of the 35 callsites have a target that is tainted by

a non-code pointer value, making them controllable even when code pointers

are protected. Moreover, 8 callsites have a target tainted by a non-pointer value,

making these callsites controllable under all write constraints imposed by cur-

rent defenses. Many of these callsites have a signi�cant number of legal targets,

ranging up to 49 targets even when combining the strongest static and dynamic

target constraints.

5.6.2 Generalized Results

Table 5.4 on page 141 shows that nginx is representative for all evaluated servers.

The fraction of tainted callsites is comparable, with the exception that callsites in

h�pd are not controllable using segregated state; h�pd creates a new process for

each connection, preventing our history �ushing attack. In all evaluated servers,

attacker-controlled callsites remain even under ¬Ptr write constraints.

Moreover, in all servers, a signi�cant number of legal targets remain even

under the strongest dynamic target constraints (Live ¬GOT), with the exception

of a small number (the aforementioned cases with h�pd, and one case in Mem-

i
i

i
i

i
i

i
i

140 CHAPTER 5. NEWTON

Table 5.3. Taint information and residual a�ack surface for nginx. Callsite: controllable indi-
rect call when sending a plain HTTP GET request. Taint source: taint information
for the function pointer (target) and first three arguments (arguments actually
used are underlined). None indicates an untainted value, while CPtr, DPtr, and
¬Ptr indicate taint through a code pointer, data pointer (and possibly CPtr), or
non-pointer value (and possibly Ptr), respectively. Targets: available targets for
the given callsite under Src (source types, the strongest static) constraints and Best :
combining Live ¬GOT (strongest dynamic constraints) and Src. Call targets marked
with † are tainted by segregated state, indicating that the call may be used in a
history flushing a�ack against CsCFI.

Taint source Targets

Callsite FPtr. Arg0 Arg1 Arg2 Src. Best

1 connection.c:808 CPtr ¬Ptr ¬Ptr ¬Ptr 2 1
2 epoll_module.c:642 DPtr DPtr ¬Ptr None 19 6
3 event.c:245 CPtr None ¬Ptr None 1 1
4 event.c:286 CPtr DPtr ¬Ptr None 2 2
5 event_accept.c:258 DPtr DPtr ¬Ptr ¬Ptr 6 1
6 h�p_chunked_filter_module.c:79 CPtr ¬Ptr None None 58 18
7 h�p_chunked_filter_module.c:92 CPtr ¬Ptr None ¬Ptr 11 8
8 h�p_charset_filter_module.c:235 CPtr ¬Ptr ¬Ptr ¬Ptr 58 18
9 h�p_charset_filter_module.c:552 CPtr ¬Ptr None None 11 8

10 h�p_core_module.c:852 ¬Ptr ¬Ptr ¬Ptr ¬Ptr 8 7
11 h�p_core_module.c:874 CPtr ¬Ptr ¬Ptr ¬Ptr 58 18
12 h�p_core_module.c:906 ¬Ptr ¬Ptr ¬Ptr ¬Ptr 58 18
13 h�p_core_module.c:1075 CPtr ¬Ptr ¬Ptr ¬Ptr 58 18
14 h�p_core_module.c:1357 ¬Ptr ¬Ptr ¬Ptr DPtr 58 18
15 h�p_core_module.c:1825 CPtr ¬Ptr None None 58 18
16 h�p_core_module.c:1840 CPtr ¬Ptr None None 11 8
17 h�p_gzip_filter_module.c:256 CPtr ¬Ptr None None 58 18
18 h�p_gzip_filter_module.c:323 CPtr ¬Ptr None None 11 8
19 h�p_headers_filter_module.c:152 CPtr ¬Ptr None None 58 18
20 h�p_log_module.c:252 DPtr ¬Ptr ¬Ptr None 6 1
21 h�p_log_module.c:297 DPtr ¬Ptr ¬Ptr DPtr 12 11
22 h�p_not_modified_filter_module.c:61 CPtr ¬Ptr None ¬Ptr 58 18
23 h�p_postpone_filter_module.c:82 CPtr ¬Ptr None None 11 8
24 h�p_range_filter_module.c:230 CPtr ¬Ptr None None 58 18
25 h�p_range_filter_module.c:551 CPtr ¬Ptr None ¬Ptr 11 8
26 h�p_request.c:514 DPtr DPtr ¬Ptr ¬Ptr 19 6
27 h�p_request.c:1126 CPtr † ¬Ptr ¬Ptr ¬Ptr 3 3
28 h�p_request.c:3002 ¬Ptr ¬Ptr ¬Ptr ¬Ptr 58 18
29 h�p_ssi_filter_module.c:329 CPtr ¬Ptr None None 58 18
30 h�p_ssi_filter_module.c:392 CPtr ¬Ptr None None 11 8
31 h�p_userid_filter_module.c:205 CPtr ¬Ptr ¬Ptr None 58 18
32 h�p_variables.c:404 ¬Ptr ¬Ptr ¬Ptr ¬Ptr 61 49
33 h�p_write_filter_module.c:238 ¬Ptr † ¬Ptr ¬Ptr None 2 1
34 output_chain.c:65 ¬Ptr ¬Ptr None None 11 8
35 palloc.c:80 ¬Ptr ¬Ptr None ¬Ptr 56 7

i
i

i
i

i
i

i
i

5.6. EVALUATION 141

Table 5.4. Summarized number of controllable callsites and targets for each server.

(a) Callsites: number of tainted (controllable) callsites under varying write constraints. Tar-
gets (static): total permissible targets (median) under each static target constraint.

Callsites Targets (static)

Server Write constraint Tainted Bin types Safe src types Src types

nginx

None 35 1,952 988 201
¬CPtr 13 1,952 953 193
¬Ptr 8 1,952 787 160
Segr 2 1,571 108 5

Segr & ¬Ptr 1 1,571 2 2

ligh�pd

None 12 1,686 249 50
¬CPtr 7 1,512 228 37
¬Ptr 2 1,187 56 6
Segr 8 1,686 230 39

Segr & ¬Ptr 2 1,187 56 6

h�pd

None 33 3,464 1,471 310
¬CPtr 27 3,464 1,469 302
¬Ptr 13 3,408 1,079 139
Segr 0 0 0 0

Segr & ¬Ptr 0 0 0 0

redis

None 14 2,253 470 219
¬CPtr 11 2,253 470 219
¬Ptr 11 2,253 470 219
Segr 2 1,227 13 11

Segr & ¬Ptr 2 1,227 13 11

memcached

None 8 2,314 275 35
¬CPtr 3 1,624 243 7
¬Ptr 3 1,624 243 7
Segr 1 2,105 18 18

Segr & ¬Ptr 0 0 0 0

bind

None 43 2,762 1,323 393
¬CPtr 40 2,762 1,253 383
¬Ptr 39 2,762 1,241 371
Segr 1 1,936 199 20

Segr & ¬Ptr 1 1,936 199 20

(b) Total permissible targets (absolute) under each dynamic target constraint. Note that these
apply for all write constraints that have at least one tainted callsite.

Targets (dynamic)

Server Baseline Live +page Computed Live Live ¬GOT

nginx 4,592 2,336 786 767 708
ligh�pd 4,450 1,867 497 474 409
h�pd† 6,113 3,835 2,002 1,985 1,928
redis 5,381 2,311 771 612 546
memcached‡ 4,326 2,420 752 738 391
bind 7,693 2,829 1,028 1,010 918

†No callsites for Segr and Segr & ¬Ptr
‡No callsites for Segr & ¬Ptr

i
i

i
i

i
i

i
i

142 CHAPTER 5. NEWTON

cached). The same is true for static target constraints; even under source-level

type-based target constraints, an attacker has multiple targets to choose from

(ranging from 2 to 393 targets) in each case where callsite corruption is possi-

ble. For several servers, including nginx, ligh�pd, Redis, and BIND, these results

apply even to a segregated state attack model with type-based target constraints.

These results show that Newton is capable of locating controllable callsites

and a choice of potential targets under even the strongest defenses. Recall that

these results assume a low-e�ort attacker, sending only a single request to each

server; thus, these results are a lower-bound for the number of controllable call-

sites.

5.7 Constructing A�acks

This section documents our experience using Newton to bypass two advanced

state-of-the-art defenses: CsCFI [30, 52, 88, 102, 131] and CPI [83]. Our case stud-

ies are constructed in an architecture-independent fashion: unlike traditional

ROP, we operate on program semantics. Thus, our results are generally applica-

ble on di�erent architectures, such as x86 and ARM. We speci�cally focus our

analysis on secure implementations of CPI and CsCFI, given that existing work

has already discussed the general limitations of CFI [25, 26, 43, 49, 57, 58] and

leakage-resistant randomization [116].

5.7.1 CsCFI

In this case study, we target CsCFI on nginx. As described in Section 5.5, to

bypass CsCFI’s write constraint (Segr), we look for callsites controllable from a

segregated (connection-speci�c) state. We (1) open a connection c1 to prepare its

memory state, (2) �ush the branch history by sending n parallel requests over an-

other connection c2 (disabling CsCFI’s protection), and �nally (3) send a request

over connection c1 to divert control �ow from a C1-controlled callsite.

As shown in Table 5.3, Newton provides us with two candidate callsites to

bypass CsCFI (those with the Segr column checked). We select callsite 33 in the

function ngx_http_write_filter:

chain = c->send_chain(c, r->out, limit);

Here, c is a pointer to our connection state (ngx_connection_t), which con-

tains a code pointer called send_chain. Clearly, the connection state and code

pointers stored therein are isolated from other connections. Other than send_-

i
i

i
i

i
i

i
i

5.7. CONSTRUCTING ATTACKS

N
EW

TO
N

143

chain and c itself (�rst argument), Newton also reports that the second r->out

argument is tainted and controllable from corrupted connection-speci�c state.

With manual inspection, we veri�ed that (1) controlling the target and argu-

ments with an arbitrary memory write to segregated state allows request han-

dling to complete without crashes, (2) we also control the third argument by

controlling the limit_rate and limit_rate_after con�guration variables and

�ipping a single (uncovered) branch in the execution, and (3) execution contin-

ues correctly if the send_chain call is diverted to a di�erent target returning a

0 value, allowing us to chain successful calls via repeated interactions with the

server.

Newton also provides us with a list of all the possible 4592 targets (no target

constraints) for our selected callsite. We target mprotect to escalate code reuse

to a code corruption attack. This function expects three arguments: (1) the start

address of the a�ected memory region, (2) the size of the region, and (3) the

protection �ags.

To select the start address, we overwrite the c pointer and repoint it to a coun-

terfeit object prepared with identical connection state in a memory location of

our choosing. To select the protection �ags, we overwrite the limit_rate_after

variable to ensure the �nal limit computation has the PROT_READ|WRITE|EXEC

bits set in the lowest byte. To select the size, we need to redirect the r->out

pointer to a value of our choosing. However, it is challenging to enforce a small

r->out pointer value, since the lower part of the address space is not normally

mapped. To address this challenge, we aim for a large mprotect surface, span-

ning from the heap (i.e., the controlled c pointer) all the way to libc code. The

latter is the next region in line in the address space, only separated from the heap

by a single unmapped gap. To �ll the gap, we use a preliminary request to redi-

rect control to libc’s malloc without worrying about its argument—since this is

a pointer, calling malloc will result in a large allocation, adjacent to libc in our

setting.

At this point, we safely hijack our victim callsite to call mprotect and make

the (now larger) heap and the entire libc code readable, writeable, and executable.

Once mprotect succeeds, we issue another request to corrupt the gettimeofday

function of libc with our own shellcode. The shellcode runs when nginx pro-

cesses the next request, giving us arbitrary code execution. Figure 5.5 shows an

overview of the attack.

Evidently, even a state-of-the-art defense like CsCFI alone is not su�cient

to stop an attacker armed with dynamic analysis. Instead, to limit the power of

these attacks, we must carefully combine context-sensitive CFI with traditional

i
i

i
i

i
i

i
i

144 CHAPTER 5. NEWTON

Figure 5.5. Chaining malloc and mprotect in nginx to make libc code pages writable, using
the callsite c->send_chain(c, r->out, limit). This figure illustrates memory
layout and key variables of the nginx process before, during, and a�er our a�ack
against CsCFI.
We �rst overwrite the send_chain code pointer in c with the address of malloc.

Since the callsite uses the address of c as �rst argument, this results in a

0x565fe958B = 1.3 GB allocation, adjacent to libc code. We then overwrite

the same code pointer with the address of mprotect and construct a counterfeit

c structure at a convenient location: knowing that the value of r->out will be

the len argument for mprotect(void *addr, size_t len, int prot), we

place c at libc− r->out, i.e., 0xf7eb6000− 0x565f3320 = 0xa18c2000 (rounded

to the page boundary). To make nginx use our counterfeit object, we must also

update the data pointer in the relevant ngx_event_t *rev structure. By using

partial HTTP requests, we divide a single control-�ow diversion into multiple

steps: (1) open a connection c1 and send a partial request; (2) use the arbitrary

memory read/write primitive to corrupt the connection state of c1, e.g., overwrite

the send_chain code pointer; (3) open connections c2 . . . cn to perform n HTTP

requests in parallel to �ush CsCFI history, i.e., recorded branches that set send_-
chain to ngx_sendfile_chain are pruned from memory, (4) �nish the partial

request of c1, triggering the control-�ow diversion while CsCFI is unable to �nd

in which context the overwritten code pointer was originally set.

CFI or other defenses. Note that state-of-the-art binary-level CFI policies based

on argument/return count matching (TypeArmor) cannot prevent our mprotect

hijacking attack, given that the callsite is diverted with a compatible function

signature. Thus, stronger static (e.g., Src types) or dynamic (e.g., Live) target or

write constraints that protect pointer corruption (e.g., CPI’s ¬Ptr) are necessary.

i
i

i
i

i
i

i
i

5.7. CONSTRUCTING ATTACKS

N
EW

TO
N

145

To con�rm the real-world applicability of Newton, we successfully imple-

mented the above attack in practice. Using gdb to mimic an attacker’s arbitrary

read and write memory primitive, we recorded a video that shows how one can

use our attack to mark libc memory pages as readable, writable, and executable.

The video, accompanied with annoted details, is available on our project web-

page.
3

5.7.2 CPI

In this case study, we target CPI on nginx. CPI enforces a ¬Ptr write constraint,

protecting code and data pointers. Thus, we use Newton’s results in Table 5.3

to �nd callsites tainted by a non-pointer value, and select callsite 32. The callsite

is in the function ngx_http_get_indexed_variable, and selects its callee from

an array of structures with function pointers, as follows:

v[index].get_handler(r, &r->variables[index], v[index].data)

Newton’s output pinpoints the taint source that we need to corrupt to control

the get_handler function pointer: the data �eld in an ngx_http_log_op_s

structure. It is worth noting how little e�ort it takes to �nd this dependency with

Newton, as inspecting the source code reveals a complex data �ow. The tainted

data �ows through multiple nginx-speci�c data structures and functions—none

of which our low-e�ort attacker needs to know.

Newton also reveals that the taint source for the three arguments (Table 5.3)

are all tainted by a non-pointer value. The last argument is controllable via the

tainted index. The �rst two arguments are controllable by corrupting the alloca-

tor state much earlier in the execution. For example, the taint of the �rst ngx_-

http_request_t* argument originates 11 functions earlier in the execution, in

ngx_http_process_request_headers. Again, Newton hides this complexity

from the user.

With simple manual inspection, we also found that (1) the request data pointed

to by the �rst argument is controllable by sending an incomplete HTTP request

(which we complete later to trigger the exploit), (2) controlling the target and

arguments with an arbitrary memory write allows request handling to complete

without crashes, and (3) execution continues if the get_handler call is diverted

to a di�erent target, making it possible to chain calls via repeated interactions

with the server.

Other than information on how to e�ect an arbitrary memory write and di-

vert control �ow, Newton also provides us with a list of the 767 usable targets

3
https://vusec.net/projects/newton

https://vusec.net/projects/newton

i
i

i
i

i
i

i
i

146 CHAPTER 5. NEWTON

stored in memory. This re�ects CPI’s Live target constraint. A complication is

that we only control the index into the v array of ngx_http_variable_t struc-

tures. Since each structure contains 6 word-sized �elds, only 1/6 of memory can

be used to select live code pointer targets. Fortunately, this alignment restriction

is bypassable using memory massaging (on the heap, stack, etc.) [19]. Moreover,

Newton found the address of dlopen live in memory, allowing us to load ar-

bitrary shared objects on the victim system and expand the set of available live

targets.

For example, if we call dlopen on "/bin/ed" or other shared objects which

use the system library call, we force the linker to bind the system code pointer

in memory (GOT). This is easier after corrupting the linker con�guration (LD_-

LIBRARY_PATH, LD_BIND_NOW). At that point, we again corrupt the index integer

to redirect get_handler to the newly created live code pointer. Subsequently, we

send another request to chain an invocation of the (now live) system library call,

allowing us to execute arbitrary commands on the victim system. To “massage”

the GOT to obtain a correctly aligned system code pointer, we carefully choose

the system-dependent shared object to load.

We note that, other than CPI, the above attack bypasses all the defenses in

the bottom-left quadrant marked by the <¬Ptr, Live> data point in Figure 5.2,

including CCFI, TASR, PtrRR, XoM, and TypeArmor. Thus, an important lesson

learned is that we must combine CPI with other strong defenses to further limit

the attack surface. CPI combined with a secure implementation of CsCFI, for

instance, would prevent us from controlling callsite 32.

When crafting the above attack in practice, we found that GNU libc enforces

strict constraints on the �ags provided to dlopen: unused bits should be zero, or

else an error is returned.
4

This limits our attack, as it means that index should

now be chosen such that the address of r->variables[index] is a valid �ag for

dlopen (e.g., RTLD_NOW), while v[index].get_handler still points to dlopen.

Successful exploitation thus depends on the libc version. Musl libc, for example,

does not enforce these constraints. Running nginx with musl libc, however, voids

dlopen pointers in memory. Instead, we found code pointers to many functions

of the exec() family, opening alternative ways for bypassing CPI.

5.8 Related Work

As we already discussed code-reuse defenses at length in this chapter, this section

discusses the literature on code-reuse attacks only.

4
https://sourceware.org/git/?p=glibc.git;h=3e539cb47e9fabfdda295926b4270b0f...

https://sourceware.org/git/?p=glibc.git;h=3e539cb47e9fabfdda295926b4270b0f3cc7fa65

i
i

i
i

i
i

i
i

5.8. RELATED WORK

N
EW

TO
N

147

return-to-libc [221] represents the �rst generation of code-reuse attacks.

Traditionally targeting the 32-bit x86 ISA, return-to-libc uses a memory cor-

ruption vulnerability to inject a return address on the stack pointing to an ex-

isting (libc) function, followed by function arguments. Thus, a subsequent ret

instruction transfers control to the prepared function, thwarting DEP [185]. By

preparing multiple call frames, function calls can be chained. On the x86-64 archi-

tecture, most function arguments are passed in CPU registers, making return-

to-libc more challenging.

Return-Oriented Programming (ROP) [167] generalizes return-to-libc, and

is now the de-facto standard in real-world code-reuse attacks. ROP also manip-

ulates the stack, but doesn’t chain complete functions. Instead, ROP uses small

code fragments ending in return instructions, called gadgets. ROP is an extremely

potent attack technique, which allows attackers to implement arbitrary Turing-

complete computations in most practical programs [122].

The initial ROP attack signaled the start of an arms race around a third-

generation of code-reuse attacks. Several defense techniques were developed,

only to be shown susceptible to improved code-reuse attacks. Jump-Oriented
Programming (JOP) [17] bypasses some execution monitoring defenses [44] and

Counterfeit Object-Oriented Programming (COOP) [120] and related attacks [25,

26, 43, 49, 57, 58] bypass many existing Control-Flow Integrity (CFI) [2]-based

defenses. Other attacks such as JIT ROP [42, 126], SROP [18], and AOCR [116]

bypass information hiding defenses, including leakage-resistant variants [116].

The “gadget-stitching” model extends even beyond code reuse, also adopted by

state-of-the-art techniques to craft data-only attacks [64, 65]. Note that although

these recent e�orts on Data-Oriented Programming (DOP) show similar weak-

nesses in modern defenses as outlined in this chapter, a key di�erence is that

most of those defenses were never designed to mitigate data-only attacks. At-

tacks crafted with Newton, on the other hand, fall within the defenses’ threat

models.

Although the way Newton �nds gadgets is somewhat similar to how ACICS

gadgets are found [49], the latter are more constrained: only attacks where the

function pointer and arguments are directly corruptible on the heap or in global

memory are considered. As shown in Section 5.7, Newton �nds more sophisti-

cated attacks, where these elements may be corrupted in complex, indirect ways.

The focus on (manual or automatic) static analysis makes code reuse increas-

ingly complex given increasingly sophisticated defenses. With Newton, we

show that a switch to a simple and natural dynamic analysis approach signi�-

cantly simpli�es the discovery and stitching of gadgets, even in the face of state-

i
i

i
i

i
i

i
i

148 CHAPTER 5. NEWTON

of-the-art defenses. Moreover, we argue that return-to-libc-style attacks on

64-bit architectures are not only practical, but also much easier, if an attacker

piggybacks on the benign data �ows of the application.

5.9 Conclusion

The “geometry” of innocent �esh on the bone has characterized ten years of code-

reuse research: an attacker statically analyzes binary code to �nd gadgets, chains

them together, and “calls” into security-sensitive syscalls. This model is simple to

understand, but scales poorly as we assume increasingly sophisticated defenses.

In this chapter, we showed that, by also considering the “dynamics” of inno-

cent �esh on the bone, even a low-e�ort attacker can easily �nd useful defense-

aware gadgets to craft practical attacks. We implemented Newton, a gadget-

discovery framework based on simple static and dynamic (taint) analysis. Using

Newton, we found gadgets compatible with state-of-the-art defenses in many

real-world programs. We also presented an nginx case study, showing that a

Newton-armed attacker can �nd useful gadgets and craft attacks that comply

with the restrictions of strong defenses such as CPI and context-sensitive CFI.

Our e�ort ultimately shows that, to su�ciently reduce the attack surface

against a dynamic attack model, we must combine multiple state-of-the-art code-

reuse defenses or, alternatively, deploy more heavyweight defenses at the cost of

higher overhead.

i
i

i
i

i
i

i
i

D
R

A
M

M
ER

6 Drammer:
Deterministic
Rowhammer A�acks
on Mobile Platforms

Recent work shows that the Rowhammer hardware bug can be used to craft pow-

erful attacks and completely subvert a system. However, existing e�orts either

describe probabilistic (and thus unreliable) attacks or rely on special (and often

unavailable) memory management features to place victim objects in vulnera-

ble physical memory locations. Moreover, prior work only targets x86 and re-

searchers have openly wondered whether Rowhammer attacks on other archi-

tectures, such as ARM, are even possible.

We show that deterministic Rowhammer attacks are feasible on commodity

mobile platforms and that they cannot be mitigated by current defenses. Rather

than assuming special memory management features, our attack, Drammer, re-

lies on the predictable memory reuse patterns of standard physical memory al-

locators. We implement Drammer on Android/ARM, demonstrating the practi-

cability of our attack, but also discuss a generalization of our approach to other

Linux-based platforms. Furthermore, we show that x86-based Rowhammer ex-

ploitation techniques no longer work on mobile platforms and address the result-

ing challenges towards practical mobile Rowhammer attacks.

To support our claims, we present the �rst Rowhammer-based Android root

exploit relying on no software vulnerability, and requiring no user permissions.
In addition, we present an analysis of several popular smartphones and �nd that

many of them are susceptible to ourDrammer attack. We conclude by discussing

potential mitigation strategies and urging our community to address the concrete

threat of faulty DRAM chips in widespread commodity platforms.

149

i
i

i
i

i
i

i
i

150 CHAPTER 6. DRAMMER

6.1 Introduction

The Rowhammer hardware bug allows an attacker to modify memory without

accessing it, simply by repeatedly accessing, i.e., “hammering”, a given physical

memory location until a bit in an adjacent location �ips. Rowhammer has been

used to craft powerful attacks that bypass all current defenses and completely

subvert a system [59, 114, 235, 146]. Until now, the proposed exploitation tech-

niques are either probabilistic [59, 235] or rely on special memory management

features such as memory deduplication [114], MMU paravirtualization [146], or

the pagemap interface [235]. Such features are often unavailable on commodity

platforms (e.g., all are unavailable on the popular Amazon EC2 cloud, despite

recent work explicitly targeting a cloud setting [114, 146]) or disabled for secu-

rity reasons [219, 227]. Recent JavaScript-based attacks, in turn, have proven

capable to reliably escape the JavaScript sandbox [19], but still need to resort

to probabilistic exploitation to gain root privileges and to completely subvert a

system [59].

Probabilistic Rowhammer attacks [59, 235] o�er weak reliability guarantees

and have thus more limited impact in practice. First, they cannot reliably en-

sure the victim object, typically a page table in kernel exploits [59], is surgically

placed in the target vulnerable physical memory location. This may cause the

Rowhammer-induced bit �ip to corrupt unintended data (rather than the victim

page table) and crash the whole system. Second, even when the victim page ta-

ble is corrupted as intended, they cannot reliably predict the outcome of such

an operation. Rather than mapping an attacker-controlled page table page into

the address space as intended, this may cause the Rowhammer-induced bit �ip

to map an unrelated page table, which, when modi�ed by the attacker, may also

corrupt unintended data and crash the whole system.

This chapter makes two contributions. First, we present a generic technique

for deterministic Rowhammer exploitation using commodity features o�ered by

modern operating systems. In particular, we only rely on the predictable be-

havior of the default physical memory allocator and its memory reuse patterns.

Using this technique (which we term Phys Feng Shui), we can reliably control

the layout of physical memory and deterministically place security-sensitive data

(e.g., a page table) in an attacker-chosen, vulnerable physical memory location.

Second, we use said technique to mount a deterministic Rowhammer attack

(or Drammer) on mobile platforms, since they present di�erent and unexplored

hardware and software characteristics compared to previous e�orts, which focus

only on x86 architectures, mainly in desktop or server settings. Concerning the

i
i

i
i

i
i

i
i

6.1. INTRODUCTION

D
R

A
M

M
ER

151

hardware, mobile platforms mostly use ARM processors. However, all known

Rowhammer techniques target x86 and do not readily translate to ARM. More-

over, researchers have questioned whether memory chips on mobile devices are

susceptible to Rowhammer at all or whether the ARM memory controller is fast

enough to trigger bit �ips [232, 235]. Concerning the software, mobile platforms

such as Android run di�erent and more limited operating systems that imple-

ment only a subset of the features available in desktop and server environments.

For example, unless explicitly speci�ed by a device vendor, the Android kernel

does currently not support huge pages, memory deduplication, or MMU paravir-

tualization, making it challenging to exploit the Rowhammer bug and impossible

to rely on state-of-the-art exploitation techniques.

Drammer is an instance of the Flip Feng Shui (FFS) exploitation technique

(abusing the physical memory allocator to surgically induce hardware bit �ips

in attacker-chosen sensitive data) [114], which for the �rst time relies only on

always-on commodity features. For any Rowhammer-based Flip Feng Shui attack

to be successful, three primitives are important. First, attackers need to be able to

“hammer su�ciently hard”—hitting the memory chips with high frequency. For

instance, no bits will �ip if the memory controller is too slow. Second, they need

to �nd a way to massage physical memory so that the right, exploitable data is

located in the vulnerable physical page. Third, they need to be able to target spe-

ci�c contiguous physical addresses to achieve (1) double-sided Rowhammer [8,

235], a technique that yields more �ips in less time than other approaches, and (2)

more control when searching for vulnerable pages (important when mounting

deterministic attacks). We show that, when attacking mobile platforms, none of

these primitives can be implemented by simply porting existing techniques.

In this chapter, we present techniques to implement aforementioned primi-

tives when attacking mobile platforms. We detail the challenges towards reliable

exploitation on Android/ARM and show how to overcome its limited feature set

by relying on DMA bu�er management APIs provided by the OS. To concretely

demonstrate the e�ectiveness of our Drammer attack on mobile platforms, we

present the �rst deterministic, Rowhammer-based Android root exploit. Our ex-

ploit can be launched by any Android app with no special permission and without

relying on any software vulnerability.

Finally, we present an empirical study and investigate how widespread the

Rowhammer bug is on mobile devices. We investigate how fast we can exploit

these bugs in popular smartphones and identify multiple phones that su�er from

faulty DRAM: 17 out of 21 of our tested 32-bit ARMv7 devices—still the most

dominant platform with a market share of over 97% [224]—and 1 out of our 6

i
i

i
i

i
i

i
i

152 CHAPTER 6. DRAMMER

tested 64-bit ARMv8 phones are susceptible to Rowhammer. We conclude by

discussing how state-of-the-art Rowhammer defenses are ine�ective against our

Drammer attack and describe new mitigation techniques.

In summary, we make the following contributions:

• We present the �rst technique to perform deterministic Rowhammer ex-

ploitation using only commodity features implemented by modern operat-

ing systems.

• We demonstrate the e�ectiveness of our technique on mobile platforms,

which present signi�cant hardware and software di�erences with respect

to prior e�orts. We implement our Drammer attack on Android/ARM and

present the �rst deterministic, Rowhammer-based Android root exploit.

Our exploit cannot be mitigated by state-of-the-art Rowhammer defenses.

• We evaluate the e�ectiveness of Drammer and our Android root exploit

and complement our evaluation with an empirical Rowhammer study on

multiple Android devices. We identify ARMv7 and ARMv8 smartphones

that su�er from faulty DRAM.

• To support future research on mobile Rowhammer, we release our code-

base as an open source project and aim to build a public database of known

vulnerable devices.
1

6.2 Threat Model

We assume that an attacker has control over an unprivileged Android app on an

ARM-based device and wants to perform a privilege escalation attack to acquire

root privileges. We do not impose any constraints on the attacker-controlled app

or the underlying environment. In particular, we assume the attacker-controlled

app has no permissions and the device runs the latest stock version of the An-

droid OS with all updates installed, all security measures activated, and no special

features enabled.

6.3 Rowhammer Exploitation

Rowhammer is a software-induced hardware fault that a�ects dynamic random-

access memory (DRAM) chips. In practice, this has the net e�ect that a piece of

1
https://www.vusec.net/projects/drammer/

https://www.vusec.net/projects/drammer/

i
i

i
i

i
i

i
i

6.3. ROWHAMMER EXPLOITATION

D
R

A
M

M
ER

153

software can �ip some bits in physical memory by solely performing memory

read operations. It is important to note that triggering the Rowhammer bug is

di�erent than using (i.e., exploiting) it in a security-relevant manner. In fact, an

exploit usually needs to trick a victim component (e.g., another process, the OS,

or another VM hosted on the same physical node) to use a vulnerable physical

memory location to store security-sensitive content. In the general case, software

exploitation of this kind proved to be challenging.

In this section, we �rst provide general background information on memory

hardware and the Rowhammer bug. Then, we summarize existing exploitation

techniques and describe the three distinct primitives that Rowhammer exploits

need to implement.

6.3.1 Memory Hardware

In order to understand the root cause of the Rowhammer bug, it is important

to understand the architecture and components of DRAM chips. DRAM works

by storing charges in an array of cells, each of which consists of a capacitor and

an access transistor. A cell represents a binary value depending on whether it is

charged or not. Cells are further organized in rows, which are the basic unit for

memory accesses. On each access, a row is “activated” by copying the content of

its memory cells to a row bu�er (thereby discharging them), and then copying the

content back to the memory cells (thereby charging them). A group of rows that

is serviced by one row bu�er is called a bank. Finally, multiple banks further form

a rank, which spans across multiple DRAM chips. A page frame is the smallest

�xed-length contiguous block of physical memory into which the OS maps a

memory page (a contiguous block of virtual memory). From a DRAM perspective,

a page frame is merely a contiguous collection of memory cells, aligned on the

page-size boundary (typically 4 KB).

Memory cells naturally have a limited retention time and leak their charge

over time. Therefore, they have to be refreshed regularly in order to keep their

data. Thus, the DDR3 standard [177] speci�es that the charge of each row has

to be refreshed at least every 64 ms. This memory refresh interval is a trade-

o� between memory integrity on the one hand, and energy consumption and

system performance on the other. Refreshing more often consumes more power

and also competes with legitimate memory accesses, since a speci�c memory

region is unavailable during the refresh [160].

i
i

i
i

i
i

i
i

154 CHAPTER 6. DRAMMER

6.3.2 The Rowhammer Bug

In a quest to meet increasing memory requirements, hardware manufacturers

squeeze more and more cells into the same space. Unfortunately, Kim et al. [76]

observed that the increasing density of current memory chips also makes them

prone to disturbance errors due to charge leaking into adjacent cells on every

memory access. They show that, by repeatedly accessing, i.e., “hammering,” the

same memory row (the aggressor row) over and over again, an attacker can cause

enough of a disturbance in a neighboring row (the victim row) to cause bits to

�ip. Thus, triggering bit �ips through Rowhammer is essentially a race against

the DRAM internal memory refresh in performing enough memory accesses to

cause su�cient disturbance to adjacent rows. Relying on activations of just one

aggressor row to attack an adjacent row is called single-sided Rowhammer, while

the more e�cient double-sided Rowhammer attack accesses the two rows that are

directly above and below the victim row [235].

6.3.3 Exploitation Primitives

While it was originally considered mostly a reliability issue, Rowhammer be-

comes a serious security threat when an attacker coerces the OS into storing

security-sensitive data in a vulnerable memory page (a virtual page that maps

to a page frame consisting of at least one cell that is subject to the Rowham-

mer bug). Depending on the underlying hardware platform, OS, and already-

deployed countermeasures, prior e�orts developed di�erent techniques to per-

form a successful end-to-end Rowhammer attack. This section summarizes prior

techniques and describes the three required primitives to exploit the Rowham-

mer bug.

P1. Fast Uncached Memory Access This primitive is the prerequisite to �ip

bits in memory and refers to the ability of activating rows in each bank fast
enough to trigger the Rowhammer bug. In practice, this can be non-trivial for

two reasons. First, the CPU memory controller might not be able to issue mem-

ory read commands to the memory chip fast enough. However, most often the

challenge relates to the presence of several layers of caches, which e�ectively

mask out all the CPU memory reads (after the �rst one). Thus, all known ex-

ploitation techniques need to implement a mechanism to bypass (or nullify) the

cache.

P2. Physical Memory Massaging This primitive consists of being able to trick

the victim component to use—in a predictable or, in a weaker form, probabilistic

i
i

i
i

i
i

i
i

6.4. THE FIRST FLIP

D
R

A
M

M
ER

155

way—a memory cell that is subject to the Rowhammer bug. More importantly,

the attacker needs to be able to massage the memory precisely enough to push

the victim to use the vulnerable cell to store security-sensitive data, such as a

bit from a page table entry. This primitive is critical for an attacker to mount a

privilege escalation attack, and it is also the most challenging one to implement

in a fully deterministic way.

P3. Physical Memory Addressing This last primitive relates to understand-

ing how physical memory addresses are used in the virtual address space of an

unprivileged process. While this primitive is not a hard requirement for Rowham-

mer exploitation in general, it is crucial to perform double-sided Rowhammer: to

access memory from two aggressor rows, an attacker must know which virtual

addresses map to the physical addresses of these rows.

6.4 The First Flip

This section documents our e�orts on hammering memory chips of mobile de-

vices. We focus on testing the hardware without attempting to mount any exploit.

In the next section, we then discuss how going from “�ipping bits” to mounting

a root privilege escalation attack is challenging, given that there are several as-

pects that make successful exploitation on mobile devices fundamentally di�er-

ent compared to previous e�orts on desktop and server settings.

6.4.1 RowhARMer

Researchers have speculated that Rowhammer on ARM could be impossible, one

of the main reasons being that the ARM memory controller might be too slow
to trigger the Rowhammer bug [232, 235]. Not surprisingly, no existing work

from academia or industry currently documents any success in reproducing the

Rowhammer bug on mobile devices.

We set up an experiment to test whether memory chips used in mobile devices

are subject to bit �ips induced by Rowhammer and whether the ARM memory

controller can issue memory read operations fast enough. Since this is a prelimi-

nary feasibility analysis, we perform the Rowhammer attack from a kernel mod-

ule (i.e., with full privileges), which allows us to cultivate optimal conditions for

�nding bit �ips: we disable CPU caching and perform double-sided Rowhammer

by using the pagemap interface to �nd aggressor rows for each victim address.

We hammer rows by performing one million read operations on their two

aggressors. To determine the minimum memory access time that still results

i
i

i
i

i
i

i
i

156 CHAPTER 6. DRAMMER

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140
0

50

100

150

200

250

300

350

400
#

O
bs

er
ve

d
bi

t
fl

ip
s

M
ed

ia
n

ac
ce

ss
ti

m
e

pe
r

re
ad

op
er

at
io

n
(n

s)

NOP instructions

Bit flips
Access time

Figure 6.1. Dependency between observed bit flips (y1) and memory access time (y2) when
repeatedly hammering the same 5 MB memory chunk, while increasing the num-
ber of NOP instructions (x) to simulate slower access times. The spike in access
time around 60 to 80 NOP instructions may be caused by a background process
during our analysis. The spike in observed bit flips around 20 NOP instructions
indicates a “sweet spot” of memory access time.

in bit �ips, we repeatedly hammer the same 5 MB of physical memory while

arti�cially increasing the time between two read operations by inserting NOP

instructions. We measure the time it takes to complete a single read operation

and report the median over all hammered pages. We initiate all bytes in the victim

row to 0xff (all bits are set) and once the hammering phase �nishes, we scan the

victim row for bit �ips—i.e., any byte that has a value di�erent than 0xff. Since

we only perform read operations, any such modi�cation to the memory content

can be directly attributed to Rowhammer.

For this experiment, we used an LG Nexus 5 device running Android 6.0.1

(the latest version at the time of writing). The results of this experiment are

encouraging: not only do bits �ip, but it is also relatively simple to obtain them.

In fact, we triggered �ips in a matter of seconds, and observed up to 150 �ips per

minute. Figure 6.1 depicts the results of our experiment. It shows the dependency

between the access time and the number of bit �ips found when scanning a 5 MB

memory chunk. Moreover, it shows that access times of 300 ns or higher are

unlikely to trigger bit �ips and that, surprisingly, the “sweet spot” for triggering

the most �ips on this particular DRAM chip is not reading at full speed (70 ns per

read), but throttling to 100 ns per read. However, note that throttling does not

i
i

i
i

i
i

i
i

6.5. EXPLOITATION ON THE X86 ARCHITECTURE

D
R

A
M

M
ER

157

necessarily result in a lower rate of actual accesses to DRAM cells: the memory

controller may reorder accesses internally.

6.5 Exploitation on the x86 Architecture

Even when a memory chip is vulnerable to Rowhammer attacks, it is challeng-

ing to perform a successful end-to-end exploitation—we need to implement the

three primitives described earlier. We now review how existing Rowhammer

exploitation techniques, which all target the x86 architecture, implement those

primitives.

6.5.1 P1. Fast Uncached Memory Access

First and foremost an attacker needs the capability to activate alternating rows

in each bank fast enough to trigger the Rowhammer bug. The main challenge

here is to bypass the CPU cache. For this purpose, state-of-the-art attacks rely

on one of the following techniques:

Explicit cache flush. This technique is based on using the clflush instruction,

which �ushes the cache entry associated to a given address. One can execute

this instruction after accessing a particular memory address, so that subsequent

read operations on that same address also trigger DRAM accesses. On x86 ar-

chitectures, the clflush instruction is particularly useful because it can be exe-

cuted even by a non-privileged process. This technique is used, for example, by

Seaborn et al. [235, 216] and is based on the �ndings from Kim et al. [76].

Cache eviction sets. This technique relies on repeatedly accessing memory ad-

dresses that belong to the same cache eviction set [8, 19, 59]. A cache eviction set

is de�ned as a set of congruent addresses, where two addresses are congruent if

and only if they map to the same cache line. Thus, accesses to a memory address

belonging to the same congruent set will automatically �ush the cache while

reading (because the associated cache line contains the content of the previously-

read memory address). This observation is the basis for the several access pat-

terns described by Gruss et al. [59] and is particularly useful when the clflush

instruction is not available (e.g., when triggering Rowhammer from JavaScript).

Non-temporal access instructions. This technique relies on accessing mem-

ory using CPU instructions or APIs that, by design, do not use the cache. Pre-

vious e�orts rely on non-temporal write instructions (e.g., MOVNTI, MOVNTDQA),

i
i

i
i

i
i

i
i

158 CHAPTER 6. DRAMMER

which are also used in some memset() and memcopy() implementations [112].

In this context, non-temporal means that the data will not likely be reused soon

and thus does not have to be cached. As a result, these operations cause the CPU

to directly write the content to memory, thus bypassing the cache.

6.5.2 P2. Physical Memory Massaging

This primitive is essential to trick the victim component into storing security-

sensitive data (e.g., a page table) in an attacker-chosen, vulnerable physical mem-

ory page. Existing e�orts have mainly relied on the following techniques for this

purpose:

Page-table spraying Previous work exploits the Rowhammer bug to achieve

root privilege escalation by �ipping bits in page table entries (PTEs) [235, 216].

This attack suggests a probabilistic exploitation strategy that sprays the memory

with page tables, hoping that at least one of them lands on a physical memory

page vulnerable to Rowhammer. The next step is then to �ip a bit in the vulner-

able physical memory page, so that the victim page table points to an arbitrary

physical memory location. Given the sprayed physical memory layout, such lo-

cation should probabilistically contain one of the attacker-controlled page table

pages (PTPs) which allows attackers to map their own page tables in the control-

ling address space. At that point, they can overwrite their own PTEs and access

arbitrary (e.g., kernel) pages in physical memory to escalate privileges.

Memory deduplication Razavi et al. [114] abuse memory deduplication to per-

form deterministic Rowhammer exploitation [19, 114]. They show that an at-

tacker can use memory deduplication to trick the OS into mapping two pages,

an attacker-controlled virtual memory page and a victim-owned virtual memory

page, to the same attacker-chosen vulnerable physical memory page. While such

an exploitation strategy is powerful and has been successfully demonstrated in a

cross-VM setting, it relies on memory deduplication, which is not an always-on

feature, even in modern operating systems (e.g., o� by default on Linux).

MMU paravirtualization Xiao et al. [146] leverage Xen MMU paravirtualiza-

tion to perform deterministic Rowhammer exploitation from a guest VM. This

exploits the property that Xen allows a guest VM to specify the physical loca-

tion of a (read-only) PTP, allowing a malicious VM to trick the VM monitor into

mapping a page table into a vulnerable location to “hammer.” Similar to mem-

ory deduplication, this is not an always-on feature and only available inside Xen

i
i

i
i

i
i

i
i

6.5. EXPLOITATION ON THE X86 ARCHITECTURE

D
R

A
M

M
ER

159

MMU paravirtualized VMs. In addition, MMU paravirtualization is no longer

the common case in popular cloud settings, with MMU virtualization becoming

much more practical and e�cient.

6.5.3 P3. Physical Memory Addressing

Processes have direct access only to virtual memory which is then mapped to

physical memory. While the virtual memory layout is known to processes in

userland, the physical memory layout is not. As discussed in the previous sec-

tion, to perform double-sided Rowhammer, an attacker needs to repeatedly ac-

cess speci�c physical memory pages. For this purpose, previous e�orts suggest

the following techniques:

Pagemap interface This technique relies on /proc/self/pagemap which pro-

vides complete information about the mapping of virtual to physical addresses.

Clearly, having access to this information is su�cient to repeatedly access spe-

ci�c rows in physical memory.

Huge pages Another option is to use huge (virtual) pages that are backed by

physically contiguous physical pages. In particular, a huge page covers 2 MB of

contiguous physical addresses. Although this is not as �ne-grained as knowing

absolute physical addresses, one can use relative o�sets to access speci�c physi-

cal memory pages for double-sided Rowhammer. In fact, it guarantees that two

rows that are contiguous in virtual memory are also contiguous in physical mem-

ory.

6.5.4 Challenges on Mobile Devices

When assessing whether one can exploit Rowhammer bugs on mobile devices,

we attempted, as a �rst step, to reuse known exploitation techniques described

above. We found, however, that none of the primitives are applicable to mobile

devices. Table 6.1 presents an overview of our analysis.

Explicit cache �ush (P1) On ARMv7, the cache �ush instruction is privi-

leged and thus only executable by the kernel. Since our threat model assumes

an unprivileged app, we cannot use this instruction to implement P1. Although

the Android kernel exposes a cacheflush() system call to userland, this system

call �ushes only up to the Level 2 cache and thus fails to force repetitive DRAM

accesses for a single address. Interestingly, ARMv8 does provide unprivileged

cache �ush instructions, but they may be disabled by the kernel.

i
i

i
i

i
i

i
i

160 CHAPTER 6. DRAMMER

Table 6.1. Techniques previously used for x86-based Rowhammer a�acks and their availability
on ARM-based mobile devices in unprivileged mode (), privileged mode (#), or
not at all (–). Some techniques are available in unprivileged mode, but are not
practical enough to use in our se�ing (G#). Note how none of these techniques can
be generally applied on all modern versions of mobile devices.

Primitive x86 platforms Mobile devices

Fast Uncached Memory Access ARMv7/ARMv8

Explicit cache flush #/G#
Cache eviction sets –/–
Non-temporal access instructions –/G#

Physical Memory Massaging
Page-table spraying G#
Memory deduplication –
MMU paravirtualization –

Physical Memory Addressing
Pagemap interface #
Huge pages –

Cache eviction sets (P1) In principle, it is possible to use cache eviction sets

to �ush addresses from the cache. Unfortunately, this technique proved to be too

slow in practice to trigger bit �ips on both ARMv7 and ARMv8.

Non-temporal access instructions (P1) ARMv8 o�ers non-temporal load

and store instructions, but they only serve as a hint to the CPU that caching is

not useful [174]. In practice, we found that memory still remains cached, making

these instructions not usable for our exploitation goals.

Page-table spraying (P2) As documented by Seaborn et al. [216], the page-

table spraying mechanism is probabilistic and may crash the OS. We aim to imple-

ment a deterministic Rowhammer exploit and thus cannot rely on this technique.

Special memorymanagement features (P2) Although device vendors may

enable memory deduplication for Low RAM con�gurations [199], it is not enabled

by default on stock Android. Moreover, MMU paravirtualization is not available

and we can thus not rely on existing special memory management features.

Pagemap interface (P3) The Linux Kernel no longer allows unprivileged ac-

cess to /proc/self/pagemap since version 4.0 [219]. This change was ported to

the Android Linux kernel in November 2015 [214], making it impossible for us

to use this interface for double-side Rowhammer.

Huge pages (P3) Although some vendors ship their mobile devices with huge

page support (Motorola Moto G, 2013 model, for example), stock Android has

i
i

i
i

i
i

i
i

6.6. THE DRAMMER ATTACK

D
R

A
M

M
ER

161

this feature disabled by default. We thus cannot rely on huge pages to perform

double-sided Rowhammer in our setting.

Additional challenges In addition, there are further characteristics that are

speci�c to mobile devices and that a�ect mobile Rowhammer attacks. First, the

ARM speci�cations [173, 174] do not provide memory details and, for example,

it is not clear what the size of a row is. Second, mobile devices do not have

any swap space. Consequently, the OS—the Low Memory Killer in particular on

Android—starts killing processes if the memory pressure is too high.

6.6 The Drammer A�ack

We now describe how we overcome the limited availability of known techniques

on mobile devices and how we mount our Drammer attack in a deterministic

fashion. In contrast to most primitives discussed in the previous section, Dram-

mer relies on general memory management behavior of the OS to perform de-

terministic Rowhammer attacks. For simplicity, we �rst describe our attack for

Android/ARM (focusing on the more widespread ARMv7 platform) and later dis-

cuss its applicability to other platforms in Section 6.8.

6.6.1 Mobile Device Memory

One prerequisite to implement useful exploitation primitives is to understand the

memory model of the chip we are targeting. One of the key properties to deter-

mine is the row size. Previous x86-based e�orts ascertain the row size either by

consulting the appropriate documentation or by running the decode-dimms pro-

gram. Unfortunately, ARM does not document row sizes, nor does its platform

provide instructions for �ngerprinting DRAM modules. As such, we propose a

timing-based side channel to determine a DRAM chip’s row size.

We can apply our technique independently from the chosen target architec-

ture. It relies on the observation that accessing two memory pages from the

same bank is slower than reading from di�erent banks: for same-bank accesses,

the controller has to re�ll the bank’s row bu�er for each read. In particular, ac-

cessing physical pages n and n+ iwhile increasing i from 0 to x, shows a slower

access time when page n+ i lands in the same bank as page n. Such increase in

access time indicates that we walked over all the pages in a row and that n + i

now points to the �rst page in the second row, falling in the same bank. By set-

ting x large enough (e.g., to 64 pages, which would indicate a row size of 256 KB),

we ensure that we always observe the side channel, as it is not expected that the

row size is 256 KB or larger. We evaluate our side channel in Section 6.9.

i
i

i
i

i
i

i
i

162 CHAPTER 6. DRAMMER

6.6.2 DMA Bu�er Management

Modern (mobile) computing platforms consist of several di�erent hardware com-

ponents: besides the CPU or System-on-Chip (SoC) itself, devices include a GPU,

display controller, camera, encoders, and sensors. To support e�cient mem-

ory sharing between these devices as well as between devices and userland ser-

vices, an OS needs to provide direct memory access (DMA) memory management

mechanisms. Since processing pipelines that involve DMA bu�ers bypass the

CPU and its caches, the OS must facilitate explicit cache management to ensure

that subparts of the pipeline have a coherent view of the underlying memory.

Moreover, since most devices perform DMA operations to physically contiguous

memory pages only, the OS must also provide allocators that support this type

of memory.

We refer to the OS interface that provides all these mechanisms as a DMA
Bu�er Management API which essentially exports “DMA-able” memory to user-

land. By construction, userland-accessible DMA bu�ers implement two of our

attack primitives: (P1) providing uncached memory access and (P3) (relative)

physical memory addressing.

6.6.3 Physical Memory Massaging

For the remaining and most crucial primitive (P2), we need to arrange the physi-

cal memory in such a way that we can control the content of a vulnerable phys-

ical memory page and deterministically land security-sensitive data therein. For

this purpose, we propose Phys Feng Shui, a novel technique to operate physical

memory massaging that is solely based on the predictable memory reuse patterns
of standard physical memory allocators. In addition to being deterministic, this

strategy does not incur the risk of accidentally crashing the system by causing

bit �ips in unintended parts of physical memory.

On a high level, our technique works by exhausting available memory chunks

of di�erent sizes to drive the physical memory allocator into a state in which it

has to start serving memory from regions that we can reliably predict. We then

force the allocator to place the target security-sensitive data, i.e., a page table, at

a position in physical memory which is vulnerable to bit �ips and which we can

hammer from adjacent parts of memory under our control.

Memory Templating Since our attack requires knowledge about which exact

memory locations are susceptible to Rowhammer, we �rst need to probe physi-

cal memory for �ippable bits—although the number and location of vulnerable

i
i

i
i

i
i

i
i

6.6. THE DRAMMER ATTACK

D
R

A
M

M
ER

163

memory regions naturally di�ers per DRAM chip, once found, the large majority

of �ips is reproducible [76]. We refer to this process as memory templating [114].

A successful templating session results in a list of templates that contain the lo-

cation of vulnerable bits, as well as the direction of the �ip, i.e., whether it is a

0-to-1 or 1-to-0 �ip.

Physical Memory Allocator Linux platforms manage physical memory via the

buddy allocator [170]. Its goal is to minimize external fragmentation by e�-

ciently splitting and merging available memory in power-of-2 sized blocks. On

each allocation request, it iteratively splits larger blocks in half as necessary un-

til it �nds a block matching the requested size. It is important to note that the

buddy allocator always prioritizes the smallest �tting block when splitting—e.g.,

it will not attempt to split a block of 16 KB if a �tting one of 8 KB is also available.

As a result, the largest contiguous chunks remain unused for as long as possible.

On each request for deallocation, the buddy allocator examines neighboring

blocks of the same size to merge them again if they are free. To minimize the

internal fragmentation produced by the buddy allocator for small objects, Linux

implements a slab allocator abstraction on top of it. The default SLUB allocator

implementation organizes small objects in a number of pools (or slabs) of com-

monly used sizes to quickly serve allocation and deallocation requests. Each slab

is expanded on demand as necessary using physically contiguous chunks of a

predetermined per-slab size allocated through the buddy allocator.

6.6.4 Phys Feng Shui

Phys Feng Shui lures the buddy allocator into reusing and partitioning memory

in a predictable way. For this purpose, we use three di�erent types of physically

contiguous chunks: large chunks (L), medium-sized chunks (M), and small chunks

(S). The size of small chunks is �xed at 4 KB (the page size). Although other values

are possible (see also Section 6.7), for simplicity, we set the size of M to the row

size and use the size of the largest possible contiguous chunk of memory that the

allocator provides for L. As illustrated in Figure 6.2, our attack then includes the

following steps:

Preparation and templating We �rst exhaust (i.e., allocate until no longer pos-

sible) all available physically contiguous chunks of size L (step 1) and probe them

for vulnerable templates which we later can exploit. We then exhaust all chunks

of size M (step 2), leaving the allocator in a state where blocks of size M and larger

are no longer available (until existing ones are released).

i
i

i
i

i
i

i
i

164 CHAPTER 6. DRAMMER

free L chunk M chunk S chunk

STEP 3
Free(L*)

STEP 1
Exhaust(L) + Template(L)

allocated

STEP 2
Exhaust(M)

P padding PT page table

STEP 4
Exhaust(M)

STEP 5
Free(M*) + FreeAll(L)

STEP 6
Land(S)

STEP 7
Padding(S)

STEP 8
Map(M)

PT

0-to-1 1-to-0

P PP P

Figure 6.2. Physical memory layout before and a�er each step of Phys Feng Shui. Depending
on the direction of the targeted bit flip, we map either the chunk before or a�er
the vulnerable one in the last step.

Selective memory reuse Next, we select one of the templates generated in the

previous step as the target for our exploit and refer to its corresponding L block

as L*. We then release L* (step 3), and immediately exhaust all M chunks again

(step 4). Since we depleted all the free chunks of size M or larger in the previous

step, this forces the allocator to place them in the region we just released (i.e.,

predictably reuse the physical memory region of the released L* chunk). We

refer to the M chunk that now holds the exploitable template as M*.

Finally, in preparation of landing the page table (PT) in the vulnerable page of

M*, in the next step we release M* (step 5). Note that we restrict our choice of M*

to chunks that are not at the edge of L*, since we need access to its surrounding

memory in order to perform double-sided Rowhammer later.

Our technique naturally increases memory pressure. In practice, the OS han-

dles low memory or out of memory (OOM) conditions by freeing up unused mem-

ory when the available memory falls under a certain threshold. This is especially

i
i

i
i

i
i

i
i

6.6. THE DRAMMER ATTACK

D
R

A
M

M
ER

165

critical on mobile devices, which do not utilize swap space. In preparation of the

next steps, which need to allocate several S chunks and would risk bumping the

amount of available memory below the threshold, we now free the remaining L

chunks to avoid triggering memory cleanup by the OS (or worse: a system crash).

Landing the first page table in the vulnerable region We now steer the mem-

ory allocator to place a S chunk in the vulnerable chunk M* that was released. For

this purpose, we deplete the allocator of available blocks of size S...M/2 by repeat-

edly allocating S chunks. This guarantees that subsequent S allocations land in M*

(step 6). We allocate S chunks by forcing (4 KB) page table allocations: we repeat-

edly map memory at �xed virtual addresses that mark page table boundaries (i.e.,

every 2 MB of the virtual address space on ARMv7). Since the maximum number

of page tables per process is 1024, we spawn a number of worker processes to

allocate as many as we need. Once all smaller chunk sizes are depleted, our next

S allocation predictably lands in the vulnerable region (no other smaller block is

available).

Determining when allocations reach the vulnerable region is trivial on Linux:

the proc �lesystem provides /proc/zoneinfo and /proc/pagetypeinfo. These

special �les are world-readable and detail information on the number of avail-

able and allocated memory pages and zones. In case these �les are not available,

we can exploit a timing or instruction-count (via the Performance Monitoring

Unit) side-channel to detect when S lands in M*: depending on whether the al-

locator can serve a request from a pool of available chunks of a matching size,

or whether it has to start splitting larger blocks, the operation takes more time

and instructions. We can use this observation by measuring the time between

an allocation and deallocation of an M chunk every time we force the allocation

of a new S chunk. Once this time falls below a certain (adaptively computed)

threshold, we know that we are �lling the vulnerable region with S, since the

allocator could no longer place a new M chunk there and had to start breaking

down blocks previously occupied by one of the former L chunks.

Aligning the victim page table Finally, we map a page p in the former L*

chunk that neighbors M* on the left (in case of a 0-to-1 �ip), or on the right (in

case of a 1-to-0 �ip), at a �xed location in the virtual memory address space to

force a new PTP allocation (step 8). Depending on the virtual address we pick, the

page table entry (PTE) that points to p is located at a di�erent o�set within the

PTP—essentially allowing us to align the victim PTE according to the vulnerable

template.

i
i

i
i

i
i

i
i

166 CHAPTER 6. DRAMMER

We can similarly align the victim PTP according to the vulnerable page to

make sure that we can �ip selected bits in the victim PTE. For this purpose, we

force the allocation of a number of padding PTPs as needed before or after allo-

cating the victim PTP (step 7).

We further need to ensure that the vulnerable PTP allocated in M* and the

location of p are 2n
pages apart: �ipping the n lowest bit of the physical page

address in the victim PTE deterministically changes the PTE to point to the vul-

nerable PTP itself, mapping the latter into our address space. To achieve this, we

select any page p in the M chunk adjacent to M* to map in the victim PTP, based

on whether it satis�es this property.

Exploitation Once we selected and aligned the victim PTP, PTE, and n accord-

ing the vulnerable template, we perform double-sided Rowhammer and replicate

the bit �ip found in the templating phase. Once we trigger the desired �ip, we

gain write access to the page table as it is now mapped into our address space.

We can then modify one of our own PTPs and gain access to any page in physical

memory, including kernel memory.

Note that the exploit is fully reliable and may only fail if the �ip discovered

in the templating phase is not reproducible (e.g., if a 0-to-1 �ip is now applied

to a 1-bit content). Since the buddy allocator provides chunk alignment by de-

sign, however, we can address this issue. By exploiting knowledge about relative

o�sets inside the L* chunk, we can predict the lower bits of physical addresses

in the vulnerable PTE. For example, if L* is of size 4 MB, meaning that it must

start at a physical address that is a multiple of 222
, we can predict the lower

222/4096 = 210 = 10 bits of all 1024 page frames that fall in L*. Thus, if

our templating phase on ARMv7 reports a 0-to-1 �ip in page 426, at bit o�set

13 of a 32-bit word—a potential PTE, where o�sets 1–12 are part of its proper-

ties �eld—we can immediately conclude that this �ip is not exploitable: if, after

Rowhammer, bit 13 is 1, the PTE may never point to its own page 426 (in fact,

it could only point to uneven pages). In contrast, a 1-to-0 �ip in page 389, at bit

o�set 16 of a 32-bit word is exploitable if we ensure that a PTE at this location

points to page 397: ____ ____ __01 1000 1101|ppro pert iess �ips to ____ ___-

_ __01 1000 0101|ppro pert iess (= 389).

6.6.5 Exploitable Templates

The number of templates that an attacker can use for exploitation is determined

by a combination of (1) the number of �ips found in potential PTEs, and (2) the

relative location of each �ip in L*.

i
i

i
i

i
i

i
i

6.6. THE DRAMMER ATTACK

D
R

A
M

M
ER

167

As discussed earlier, a bit �ip in a PTE is exploitable if it �ips one of the

lower bits of the address part. For ARMv7, this means that �ips found in the

lowest 12 bits of each 32-bit aligned word are not exploitable as these fall into

the properties �eld of a PTE. Moreover, a �ip in one of the higher bits of a PTE

is also not exploitable in a deterministic matter: a 0-to-1 �ip in the highest bit

would require the PTE to point to a page that is, physically, 2 GB to the right of

its PTP. Without access to absolute physical addresses, we can only support bit

�ips that trigger a page o�set shift of at most the size of L − 1. For example, if

L is 4 MB (512 page frames), a 0-to-1 �ip in bit 9 of a possible 32-bit word in the

�rst page of L, is exploitable: the exploit requires a PTE that points to a page that

is 29 = 256 pages away from the vulnerable page. The same �ip in page 300

of L, however, is not exploitable, as it would require an entry pointing to a page

outside of L.

In addition, ARMv7’s page tables are, unlike x86’s ones, of size 1 KB. Linux,

however, expects page tables to �ll an entire page of 4 KB and solves this by

storing two 1 KB ARM hardware page tables, followed by two shadow pages

(used to hold extra properties that are not available in the hardware page tables),

in a single 4 KB page. This design further reduces the number of exploitable

�ips by a factor two: only �ips that fall in the �rst half of a page may enclose a

hardware PTE.

To conclude, for ARMv7, with a maximum L size of 4 MB, a template is not

exploitable if (1) it falls in the second half of a page (a shadow page) (2) it falls

in the lowest 12 bits of a 32-bit word (the properties �eld of a PTE), or (3) it falls

in the highest 11 bits of a 32-bit word. Consequently, for each word, at most 9

bits are exploitable, and since there are only 256 hardware PTEs per page, this

means that, at most, 2, 304 bits out of all possible 32, 768 bits of a single page

are exploitable (around 7.0%).

6.6.6 Root Privilege Escalation

Once we have control over one of our own PTPs, we can perform the �nal part

of the attack (i.e., escalate privileges to obtain root access). For this purpose, we

repeatedly map di�erent physical pages to scan kernel memory for the security

context of our own process (struct cred), which we identify by using a unique

24-byte signature based on our unique (per-app) UID. We discuss more details

and evaluate the performance of our Android root exploit in Section 6.9.

i
i

i
i

i
i

i
i

168 CHAPTER 6. DRAMMER

6.7 Implementation

To demonstrate that deterministic Rowhammer attacks are feasible on commod-

ity mobile platforms, we implemented our end-to-end Drammer attack on An-

droid. Android provides DMA Bu�er Management APIs through its main mem-

ory manager called ION, which allows userland apps to access uncached, phys-

ically contiguous memory. Note, however, that Drammer extends beyond ION

and we discuss how to generalize our attack on other platforms in Section 6.8.

6.7.1 Android Memory Management

With the release of Android 4.0, Google introduced ION [229] to unify and re-

place the fragmented memory management interfaces previously provided by

each hardware manufacturer. ION organizes its memory pools in at least four

di�erent in-kernel heaps, including the SYSTEM_CONTIG heap, which allocates

physically contiguous memory allocated via kmalloc() (slab allocator). Further-

more, ION supports bu�er allocations with explicit cache management, i.e., cache

synchronization is left up to the client and memory access is essentially direct,

uncached. Userland apps can interact with ION through /dev/ion—allowing un-

cached, physically contiguous memory to be allocated by any unprivileged app

without any permissions.

Our implementation uses ION to allocate L and M chunks—and maps such

chunks to allocate S page table pages (4 KB on Android/ARM). Given that SLUB’s

kmalloc() resorts directly to the buddy allocator for chunks larger than 8 KB, we

can use ION to reliably allocate 16 KB and larger chunks. We set L to 4 MB, the

largest size kmalloc() supports. This gives us the most �exibility when templat-

ing and isolating vulnerable pages. Although more complex con�gurations are

possible, for simplicity we set M to the row size (always larger than 16 KB). Intu-

itively, this allows us to release a single vulnerable row for page table allocations,

while still controlling the aggressor rows to perform double-sided Rowhammer.

Supporting other M values yields more exploitable templates, at the cost of addi-

tional complexity.

6.7.2 Noise Elimination

To ensure reliability, an attacker needs to eliminate interference from other ac-

tivity in the system (e.g., other running apps) during the Phys Feng Shui phase.

The risk of interference is, however, minimal. First, our Phys Feng Shui phase is

designed to be extremely short-lived and naturally rule out interference. Second,

interference is only possible when the kernel independently allocates memory

i
i

i
i

i
i

i
i

6.8. GENERALIZATION

D
R

A
M

M
ER

169

via the buddy allocator in the low memory zone. Since most kernel allocations

are served directly from slabs, interference is hard to �nd in practice.

Nonetheless, the attacker can further minimize the risk of noise by schedul-

ing the attack during low system activity, e.g., when no user is interacting with

the device or when the system enters low power mode with essentially no back-

ground activity. Android provides noti�cations for both scenarios through the

intents ACTION_SCREEN_OFF and ACTION_BATTERY_LOW.

6.8 Generalization

ION facilitates a Rowhammer attack on Android/ARM by readily providing DMA

bu�er management APIs to userland, but it is not yet available on every Linux

platform (although there are plans to upstream it [236, 222]). Nonetheless, we

describe how one can generalize our deterministic attack to other (e.g., x86) plat-

forms by replacing ION with other standard capabilities found in server and desk-

top Linux environments. More speci�cally, the use of ION in Drammer can be

replaced with the following strategies:

(1) Uncached memory Rather than having ION map uncached memory in

userland, one can employ clflush or any of the other cache eviction techniques

that have previously been used for Rowhammer [19, 59, 76, 182, 183, 112, 114,

235, 146].

(2) L chunks Transparent hugepages (THP) [179] supported by Linux (enabled

by default on recent distributions for better performance [187, 213] and available

on some Android devices) can replace the physically contiguous L chunks allo-

cated by ION. By selectively unmapping part of each L chunk backed by a THP,

one can also directly create a M*-sized hole without �lling it with M chunks �rst.

To learn when a THP allocation fails (i.e., when L chunks have been exhausted),

one can read statistics from /proc/vmstat [203]. To force the kernel to allocate

THPs (normally allocated in high memory) in low memory (normally reserved

to kernel pages, e.g., PTPs), one can deplete the ZONE_HIGHMEM zone before start-

ing the attack, as detailed in prior work [73]. Note that THPs contribute to the

ability to mount deterministic attacks, not just to operate double-sided Rowham-

mer [114, 235, 146], in our setting.

(3) M chunks While using THPs to exhaust M chunk allocations is infeasible

(they are larger), one can abuse the SLUB allocator and force it to allocate chunks

i
i

i
i

i
i

i
i

170 CHAPTER 6. DRAMMER

of a speci�c size through the buddy allocator. This can be done by depleting a

slab cache of a carefully selected size (e.g., depleting kmalloc-256 would force

one 4 KB allocation) by triggering multiple allocations via particular system calls,

e.g., sendmmsg(), as described by Xu et al. [147, 148].

(4) Predictable PTE content To ensure that our victim PTE points to an attacker-

controlled physical page at a predictable o�set, we rely on mapping neighboring

chunks (the �rst and the last fragment of a THP in our generalized attack) mul-

tiple times in userland (the �rst time at allocation time, the second time when

creating the victim page table). To implement this strategy with THPs, one can

create a shared memory segment associated to the vulnerable THP (shared mem-

ory support for THPs is being merged mainline [220]) and attach it multiple times

at �xed addresses to force page table allocations with PTEs pointing to it. As an

alternative (until THP shared memory support is available mainline), one can

simply map a new anonymous (4 KB) user page when forcing the allocation of

the page table. As the ZONE_HIGHMEM zone is depleted, such user page will also

end up in low memory right next to the PTP.

6.9 Evaluation

In this section, we evaluate various aspects of Drammer. We (1) evaluate our

proposed side channel to detect the row size on a given device. Using its results,

we (2) perform an empirical study on a large set of Android smartphones to inves-

tigate to what extent consumer devices are a�ected by susceptible DRAM chips.

Finally, we (3) combine results from our study with the �nal exploitation step

(i.e., from page table write access to root privilege escalation) and compute how

fast we can perform our end-to-end attack.

6.9.1 Mobile Row Sizes

We evaluate the row size detection side channel described in Section 6.6 by con-

structing a heatmap for page-pair access times. We set our upper limit in both

directions to 64 pages, and thus read from page pairs (1, 1), (1, 2), . . . , (1, 64),

(2, 1), (2, 2), . . . , (64, 64).

Figure 6.3 shows such a heatmap for a LG Nexus 5 phone. We determined that

the row size is 16 pages, which is 16×4K = 64K . This is somewhat surprising,

given that most previous x86 e�orts report a row size of 128K.

i
i

i
i

i
i

i
i

6.9. EVALUATION

D
R

A
M

M
ER

171

0 16 32 48 64

Page 1

0

16

32

48

64
Pa

ge
2

100

125

150

175

A
cc

es
s

ti
m

e
(n

s)

Figure 6.3. Heatmap representing the time required to access a given pair of pages on a LG
Nexus 5. The diagonal pa�ern clearly indicates that the row size is 16 pages = 64K.

6.9.2 Empirical Study

For our empirical study, we acquired the following ARMv7-based devices: 15 LG

Nexus 5 phones, a Samsung Galaxy S5, two One Plus Ones, two Motorola Moto

G devices (the 2013 and 2014 model), and a LG Nexus 4. We further analyzed a

number of ARMv8-based devices: a LG Nexus 5X, a Samsung Galaxy S6, a Lenovo

K3 Note, a Xiaomi Mi 4i, a HTC Desire 510, and a LG G4.

We subject each device to a Rowhammer test, which (1) exhausts all the large

ION chunks to allocate a maximum amount of hammerable memory (starting at

4 MB chunks, down to chunks that are 4 times the row size); (2) performs double-

sided Rowhammer on each victim page for which aggressor pages are available

twice and checks the entire victim row for �ips (i.e., we hammer once with all

victim bits set to 1—searching for 1-to-0 �ips—and once with all bits set to 0); and

(3) for each induced �ip, dumps its virtual (and physical, if /proc/self/pagemap

is available) address, the time it took to �nd it (i.e., after n seconds), its direction

(1-to-0 or 0-to-1), and whether it is exploitable by our speci�c Drammer attack,

as discussed in Section 6.6.

To hammer a page, we perform 2x 1M read operations on its aggressor pages.

Although prior work shows that 2.5M reads yields the optimal amount of �ips,

lowering the read count allows us to �nish our experiments faster, while still

inducing plenty of bit �ips.

i
i

i
i

i
i

i
i

172 CHAPTER 6. DRAMMER

Table 6.2. Empirical analysis results. For each device, the table shows the amount of hammered
DRAM (MB), the median access time for a single read operation (ns), the number
of unique flips found (#flips), the average amount of KB that contain a single flip
(KB), the number of #1-to-0 and #0-to-1 flips, the number of exploitable templates
according our a�ack (#exploitable), and a�er how many seconds of hammering we
found the first exploitable flip (1st). For same model devices, we use a subscript
number to identify them individually. The top half of the table shows ARMv7-based
(32-bit) smartphones, while the lower rows are ARMv8 (64-bit).

Analysis results

Device MB ns # flips KB #1-to-0 #0-to-1 #exploitable 1st

A
R

M
v7

Nexus 51 441 70 1,058 426 1,011 47 62 (5.86%) 116s
Nexus 52 472 69 284,428 2 261,232 23,196 14,852 (5.22%) 1s
Nexus 53 461 69 547,949 1 534,695 13,254 32,715 (5.97%) 1s
Nexus 54 616 71 0 – – – – –
Nexus 55 630 69 747,013 1 704,824 42,189 46,609 (6.24%) 1s
Nexus 56 512 69 215,233 3 207,856 7,377 13,365 (6.21%) 3s
Nexus 58 485 70 32,328 15 28,500 3,828 1,894 (5.86%) 4s
Nexus 59 569 69 476,170 2 434,086 42,084 30,190 (6.34%) 0s
Nexus 510 406 69 160,245 3 150,485 9,760 8,701 (5.43%) 1s
Nexus 511 613 70 0 – – – – –
Nexus 512 600 70 17,384 35 16,767 617 1,241 (7.14%) 16s
Nexus 513 575 69 161,514 4 160,473 1,041 10,378 (6.43%) 355s
Nexus 514 576 69 295,537 2 277,708 17,829 18,900 (6.40%) 1s
Nexus 515 573 69 38,969 15 35,515 3,454 2,775 (7,12%) 11s
Nexus 517 621 70 0 – – – – –
Galaxy S5 207 82 0 – – – – –
OnePlus One1 292 71 3,981 75 2,924 1,057 242 (6.08%) 942s
OnePlus One2 1,189 69 1,992 611 942 1,050 94 (4.72%) 326s
Moto G2013 134 127 429 275 419 10 30 (6.99%) 441s
Moto G2014 151 127 1,577 98 1,523 54 71 (4.66%) 92s
Nexus 4 82 18 1,328 64 1,061 267 104 (7.83%) 7s

A
R

M
v8

Nexus 5x 271 63 0 – – – – –
Galaxy S6 234 82 0 – – – – –
K3 Note 423 218 0 – – – – –
Mi 4i 327 159 0 – – – – –
Desire 510 186 122 0 – – – – –
G4 833 64 117,496 8 117,260 236 6,560 (5.58%) 5s

Our results (presented in Table 6.2) show that many tested ARMv7 devices

are susceptible to the Rowhammer bug, while our ARMv8 devices seem some-

what more reliable (although still vulnerable). However, due to our small current

ARMv8 sample size, we cannot conclude that ARMv8 devices are more resilient

by design. Moreover, it should be noted that our Nexus 5 devices have been used

extensively in the past for a variety of research projects. This may indicate a

i
i

i
i

i
i

i
i

6.9. EVALUATION

D
R

A
M

M
ER

173

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

R
at

io
of

fl
ip

s
di

sc
ov

er
ed

Ratio of bytes hammered

Nexus 55 Moto G2013 OnePlus One2

Figure 6.4. Template distribution over memory for three cases—one with many flips (Nexus
55), one with few flips (Moto G2013), one with a large memory region without
flips (OnePlus One2).

correlation between (heavy) use and the ability to induce (more) bit �ips. Fu-

ture research is required, however, to con�rm whether DRAM wearing actually

contributes to more observable bit �ips.

A second key �nding presented in Table 6.2 is that a device from 2013 (Moto

G, 1
st

generation) is vulnerable to the Rowhammer bug. This shows that ARM

memory controllers have been capable in performing Rowhammer attacks for

at least three years. Moreover, the MSM8226 SoC (Qualcomm Snapdragon 400),

which both Moto Gs are shipped with, is still a popular SoC for smartwatches

(e.g., Motorola Moto 360 2
nd

generation or Huawei Watch), suggesting that smart-

watches may be susceptible to Rowhammer-based exploits as well. Additionally,

while the majority of �ips are induced on LPDDR3-devices, the reported �ips on

the Nexus 4 show that even LPDDR2 is be vulnerable.

Third, when looking at the exploitability of observed �ips (exploitable and 1st
columns of Table 6.2), we conclude that once we see �ips, we will eventually �nd
exploitable �ips. Although only around 6% of all observed �ips are exploitable,

we always �nd enough �ips to also �nd those that we can use in our end-to-end

Android root exploit.

To get a better understanding of the template distribution over memory, we

display a CDF for three interesting devices in Figure 6.4: one with many �ips

(Nexus 55), one with few �ips (Moto G2013), and the OnePlus One2. For most

i
i

i
i

i
i

i
i

174 CHAPTER 6. DRAMMER

other devices, the distribution trend is similar as that of the Nexus 5 and Moto

G. For the OnePlus One, however, it is interesting to notice that a large region of

the DRAM exposes no �ips at all (from 5% to 60%).

6.9.3 Root Privilege Escalation

Armed with bit �ips from the memory templating step, we rely on Phys Feng

Shui to place the victim page table in a vulnerable template-matching location

and proceed to reproduce an exploitable bit �ip. This step allows us to control one

of our own page tables, enabling root privilege escalation. To complete our An-

droid root exploit, we overwrite the controlled page table to probe kernel mem-

ory for our own struct cred structure.

The struct cred structure represents a process’ security context and holds,

among others, its real, e�ective, and saved user and group IDs (6 UIDs). Since

Android provides each app—and thus each running process—a unique UID, we

can �ngerprint a security context by comparing 6× 4 = 24 bytes. In our exper-

iments on the latest kernel, the physical page that stores a speci�c struct cred

has 20 bits of entropy, placed between 0x30000000 and 0x38000000. Moreover,

the structure is always aligned to a 128 byte boundary, that is there are
4096
128

= 32

possible locations within a page on which a struct cred can be found. To suc-

cessfully �nd our own, we thus have to map and scan 220
di�erent physical pages

in the worst-case scenario, and for each page perform 32 di�erent compare op-

erations, resulting in, at most, 220 ∗ 32 = 33, 554, 432 calls to memcmp. Since

we control only a single page table—on ARMv7 capable of storing PTEs to 512

physical pages—we also need to �ush the TLB every 512 tries. Thus, in order to

read all possible pages that may contain own our struct cred, we must perform

220

512
= 2, 048 TLB �ushes.

We �ush the TLB by reading from 8, 196 di�erent pages in a 32 MB memory

region, which takes approximately 900µs. Comparing 24 bytes using memcmp()

takes at most 600 ns, limiting the upper bound time of the �nal exploitation step

to 2, 048×900µs+33, 554, 432×600ns ∼ 22 seconds (measured on a Nexus

5). Note that having to break 20 bits of entropy does not make our attack less

deterministic: we will always be able to �nd our own struct cred.

Based on the results from our empirical study, we �nd that, for the most vul-

nerable phone, an end-to-end attack (including the �nal exploitation step) takes

less than 30 seconds, while in the worst-case scenario, it takes a little over 15

minutes, where templating is obviously the most time-consuming phase of the

attack. To con�rm that our exploit is working, we successfully exploited our

Nexus 58 in less than 20 seconds.

i
i

i
i

i
i

i
i

6.10. MITIGATION AND DISCUSSION

D
R

A
M

M
ER

175

Finally, to support future research on mobile Rowhammer and to expand our

empirical study to a broader range of devices, we release our codebase as an open

source project and aim to build a public database of known vulnerable devices

on our project website.

6.10 Mitigation and Discussion

In this section, we investigate the e�ectiveness of current Rowhammer defenses

and discuss potential design improvements of the memory management process

that could mitigate our attack.

6.10.1 Existing Rowhammer Defenses

Countermeasures against Rowhammer have already been proposed, both in soft-

ware and hardware, but very few are applicable to the mobile domain or e�ective

against a generic attack such as the one we proposed.

So�ware-based Instruction “blacklisting”, i.e., disallowing or rewriting instruc-

tions such as CLFLUSH [235, 216] and non-temporal instructions [112] has been

proposed as a countermeasure and is now deployed in Google Native Client

(NaCl). Similarly, access to the Linux pagemap interface is now prohibited from

userland [214, 219]. However, these countermeasures have already proven insuf-

�cient, since Rowhammer has been demonstrated in JavaScript [19, 59], where

neither these special instructions nor the pagemap interface are present. As a

more generic countermeasure, ANVIL [8] tries to detect Rowhammer attacks by

monitoring the last-level cache miss rate and row accesses with high temporal

locality. Similarly, Herath et al. [233] propose to monitor the number of last-level

cache misses during a given refresh interval. Both approaches rely on CPU per-

formance counters speci�c to Intel/AMD. Furthermore, our attack bypasses the

cache completely, thus producing no cache misses that could raise red �ags.

Hardware-based Memory with Error Correcting Codes (ECC) corrects single bit

�ip errors, and reports other errors. However, Lanteigne [183] studied Rowham-

mer on server settings with ECC and reported surprising results, as some server

vendors implement ECC to report bit �ip errors only upon reaching a certain

threshold—and one vendor even failed to report any error. Likewise, ECC often

does not detect multiple �ips in a single row. Doubling DRAM refresh rates has

been the response of most hardware vendors via EFI or BIOS updates [186, 202,

i
i

i
i

i
i

i
i

176 CHAPTER 6. DRAMMER

204]. It severely limits most attacks. However, Kim et al. [76] show that the re-

fresh rate would need to be increased up to eight times to completely mitigate the

issue. Aweke et al. [8] mention that both doubling the DRAM refresh rate and

prohibiting the CLFLUSH instruction defeat Rowhammer attacks, but no system

currently implements it. As increased refresh rates have severe consequences

for both power consumption and performance [160], this countermeasure does

not seem well-suited for mobile devices. In addition, it aligns poorly with the

direction taken by the LPDDR4 standard [178], which requires the refresh rate

to drop at low temperatures to conserve battery life.

Further mitigations rely on the Detection of Activation Patterns to refresh tar-

geted rows and need support from the DRAM chip or the memory controller.

The LPPDR4 standard proposes Target Row Refresh (TRR) [178], which seems

to be an e�ective countermeasure, but we need to expand our study to more de-

vices shipped with this type of memory. Probabilistic Adjacent Row Activation

(PARA) [76] refreshes neighboring rows on each activation with a low probabil-

ity (and thus very likely during repeated activations in a Rowhammer attack),

but requires modi�cations of the memory controller to do so. ARMOR [197] in-

troduces an extra cache bu�er for rows with frequent activations, i.e., hammered

rows, but again needs to be implemented in the memory controller.

6.10.2 Countermeasures Against Drammer

We now elaborate on countermeasures that are more speci�c to our Drammer

attack on mobile platforms.

Restriction of userland interface Since DMA plays an important part in the

deterministic Rowhammer attack on mobile devices, the question arises whether

userland apps should be allowed unrestricted access to DMA-able memory. On

Android, the motivation for doing so via ION is device fragmentation: vendors

need to de�ne custom heaps depending on the speci�c hardware requirements

of each product, and provide a mapping of use cases to heaps in their custom im-

plementation of gralloc(). It is Google’s policy to keep the vendors’ product-

speci�c code in user rather than in kernel mode [223].
2

Linux implements sim-

ilar DMA-support with the dma-buf bu�er sharing API [217], but with a more

restricted interface. However, ION seems to �ll a gap in this regard [231] and

e�orts are underway to upstream it [236, 222].

2
Full discussion at the Linux Plumbers Conference 2013: https://www.youtube.com/watch?v=

8okc75j5cKk

https://www.youtube.com/watch?v=8okc75j5cKk
https://www.youtube.com/watch?v=8okc75j5cKk

i
i

i
i

i
i

i
i

6.10. MITIGATION AND DISCUSSION

D
R

A
M

M
ER

177

Concurrently to our work Google has adopted several defenses from the Linux

kernel in Android [226] concerning memory protection and attack surface reduc-

tion. While the majority of defenses do not a�ect our attack, Android now pro-

vides mechanisms to enforce access restrictions to ioctl commands and added

seccomp to enable system call �lers. These mechanisms could be used to restrict

the userland interface of ION.

However, we note that disabling ION is not the enough to stop Rowhammer-

based attacks: (1) as discussed in Section 6.8, it is possible to generalize our at-

tack to other Linux-based platforms without ION; (2) since a large number of

DRAM chips are vulnerable to bit �ips and an attacker might still be able to ex-

ploit them through other means. Nevertheless, improvements to the interface

of ION and memory management in general could signi�cantly raise the bar for

an attacker. For example, a possible improvement is to adopt constraint-based

allocation [218], where the (ION) allocator picks the type of memory for an allo-

cation based on constraints on the devices sharing a bu�er and defers the actual

allocation of bu�ers until the �rst device attaches one (rather than upon request

from a userland client).

Memory isolation and integrity In the face of an OS interface that provides

user applications access to DMA-able memory, stricter enforcement of memory

isolation may be useful. Speci�cally, it may be possible to completely isolate

DMA-able memory from other regions. Currently, ION readily breaks the iso-

lation of memory zones by allowing userland to allocate physically contiguous

memory in low memory regions usually reserved for the kernel and page tables.

One option is to isolate ION regions controlled by userland from kernel mem-

ory. In principle, ION can already support isolated heaps (e.g., ION carveout),

but such heaps are statically preallocated and do not yet provide a general bu�er

management primitive. Furthermore, even in the absence of ION, an attacker can

force the buddy allocator to allocate memory (e.g., huge or regular pages) in ker-

nel memory zones by depleting all the memory available to userland [73]. Thus,

the design of isolation and integrity measures for security-critical data such as

page tables also needs improvements.

For instance, the characteristics of the underlying DRAM cells could be taken

into account when allocating memory regions for security-critical data. Flikker

proposes to allocate critical data in memory regions with higher refresh rates

than non-critical data [87]. RAPID suggests that the OS should prefer pages with

longer retention times, i.e., that are less vulnerable to bit �ips [137]. Even with-

out a DRAM-aware allocator, isolating security-critical data (e.g., page tables) in

i
i

i
i

i
i

i
i

178 CHAPTER 6. DRAMMER

zones that the system never uses for data that can be directly (e.g., ION bu�ers)

or indirectly (e.g., slab bu�ers) controlled would force attackers to resort to a

probabilistic attack with low chances of success (no deterministic or probabilis-

tic memory reuse). However, enforcing strict isolation policies is challenging as,

when faced with high memory pressure, the physical page allocator naturally

encourages cross-zone reuse to eliminate unnecessary OOM events—opening up

again opportunities for attacks [73]. In addition, even strict isolation policies

may prove insu�cient to completely shield security-sensitive data. For example,

ION is also used by the media server, which is running at a higher privilege than

normal apps. Hence, an attacker controlling a hypothetically isolated ION region

could still potentially corrupt security-sensitive data, i.e., the media server’s state,

rather than, say, page tables.

Prevention of memory exhaustion Per-process memory limits could make it

harder for an attacker (1) to �nd exploitable templates and (2) exhaust all avail-

able memory chunks of di�erent sizes during Phys Feng Shui. Android already

enforces memory limits for each app, but only at the Dalvik heap level. As a

countermeasure, we could enforce this limit at the OS level (accounting for both
user and kernel memory), and per-user ID (to prohibit collusion).

6.11 Related Work

The Rowhammer bug has gathered the attention of the scienti�c community for

two years, beginning with the work of Kim et al. [76], who studied the possibility

and the prevalence of bit �ips on DDR3 for x86 processors. Aichinger [4] later

analyzed the prevalence of the Rowhammer bug on server systems with ECC

memory and Lanteigne performed an analysis on DDR4 memory [182]. In con-

trast to these e�orts, we are the �rst to study the prevalence of the Rowhammer

bug on ARM-based devices. Several e�orts focused on �nding new attack tech-

niques [8, 19, 59, 76, 112, 114]. However, all these techniques only work on x86

architectures and, as discussed in Section 6.5.4, are not applicable to our setting.

Drammer is an instance of the Flip Feng Shui (FFS) exploitation technique [114].

Rather than using memory deduplication, Drammer relies on Phys Feng Shui

for physical memory massaging on Linux. This shows that FFS can be imple-

mented with always-on commodity features.

Lipp et al. [86] demonstrated cache eviction on ARM-based mobile devices,

but did not evaluate the possibility of Rowhammer attacks based on cache evic-

tion. Other attack techniques focus on the DRAM itself. Lanteigne [182, 183] ex-

i
i

i
i

i
i

i
i

6.12. CONCLUSION

D
R

A
M

M
ER

179

amined the in�uence of data and access patterns on bit �ip probabilities on DDR3

and DDR4 memory on Intel and AMD CPUs. Pessl et al. [106] demonstrated that

reverse engineering the bank DRAM addressing can reduce the search time for

Rowhammer bit �ips. These techniques are complementary to our work.

Another line of related work uses the predictable memory allocation behavior

of Linux for the exploitation of use-after-free vulnerabilities. Kemerlis et al. [73]

showed in their ret2dir attack how kernel allocators can be forced to allocate user

memory in kernel zones. Xu et al. [147, 148] used the recycling of slab caches by

the SLUB allocator to craft the PingPongRoot root exploit for Android. Finally,

Lee Campbell [188] relied on kernel object reuse to break out of the Chrome
sandbox on Android.

In concurrent work, Zhang et al. [155] perform a systematic analysis of the

design and implementation of ION, although without studying the topic of cache

coherency. They found similar security �aws as the ones we exploit for our at-

tack, but described di�erent attack scenarios: (1) due to the unlimited access to

ION heaps, both concerning access restrictions and memory quotas, an attacker

can perform a denial-of-service attack by exhaustively allocating all device mem-

ory; (2) the recycling of kernel memory for userland apps—and in this case miss-

ing bu�er zeroing logic in between—makes ION vulnerable to sensitive informa-

tion leakage. Consequently, their proposed redesign of ION contains some of

the countermeasures we discussed in the previous section, e.g., enforcing mem-

ory quotas and restricting the userland interface. However, they observe that

implementing these changes is challenging, as they incur performance penalties,

break backward-compatibility, and add complexity by introducing new security

mechanisms speci�cally for the access to ION heaps.

6.12 Conclusion

In this chapter, we demonstrated that powerful deterministic Rowhammer attacks

that grant an attacker root privileges on a given system are possible, even by only

relying on always-on features provided by commodity operating systems. To con-

cretely substantiate our claims, we presented an implementation of our Dram-

mer attack on the Android/ARM platform. Not only does our attack show that

practical, deterministic Rowhammer attacks are a real threat for billions of mo-

bile users, but it is also the �rst e�ort to show that Rowhammer is even possible

at all (and reliably exploitable) on any platform other than x86 and with a much

more limited software feature set than existing solutions. Moreover, we demon-

strated that several devices from di�erent vendors are vulnerable to Rowhammer.

i
i

i
i

i
i

i
i

180 CHAPTER 6. DRAMMER

To conclude, our research shows that practical large-scale Rowhammer attacks

are a serious threat and while the response to the Rowhammer bug has been rel-

atively slow from vendors, we hope our work will accelerate mitigation e�orts

both in industry and academia.

i
i

i
i

i
i

i
i

G
U

A
R

D
IO

N

7 GuardION: Practical
Mitigation of
DMA-based
Rowhammer A�acks
on ARM

Over the last two years, the Rowhammer bug transformed from a hard-to-exploit

DRAM disturbance error into a fully weaponized attack vector. Researchers

demonstrated exploits not only against desktop computers, but also used single

bit �ips to compromise the cloud and mobile devices, all without relying on any

software vulnerability.

Since hardware-level mitigations cannot be backported, a search for software

defenses is pressing. Proposals made by both academia and industry, however,

are either impractical to deploy, or insu�cient in stopping all attacks: we present

Rampage, a set of DMA-based Rowhammer attacks against the latest Android OS,

consisting of (1) a root exploit, and (2) a series of app-to-app exploit scenarios

that bypass all defenses.

To mitigate Rowhammer exploitation on ARM, we proposeGuardion, a light-

weight defense that prevents DMA-based attacks—the main attack vector on mo-

bile devices—by isolating DMA bu�ers with guard rows. We evaluate Guardion

on 22 benchmark apps and show that it has a negligible memory overhead. We

further show that we can improve system performance by re-enabling higher

order allocations after Google disabled these as a reaction to previous attacks.

181

i
i

i
i

i
i

i
i

182 CHAPTER 7. GUARDION

7.1 Introduction

For decades, defensive research on memory corruption could brush aside the

threat of exploitation via hardware bugs as “outside the threat model,” if not sci-

ence �ction entirely. The frightening list of devastating Rowhammer attacks,

however, published at one security venue after another [19, 50, 59, 114, 134, 146],

suggests that we are in urgent need of practical defenses. In this chapter, we

propose a practical, isolation-based protection that stops DMA-based Rowham-

mer attacks by carefully surrounding DMA bu�ers with DRAM-level guard rows.

We focus our work on mobile devices as here, the problem is even more worri-

some: unlike desktop and server machines, it is impossible to perform hardware

upgrades.

Rowhammer on mobile devices The Rowhammer hardware bug at its core

consists of the leakage of charge between adjacent memory cells on a densely

packed DRAM chip [76]. Thus, whenever the CPU reads or writes one row of

bits in the DRAM module, the neighboring rows are ever so slightly a�ected. Nor-

mally, this does not create problems as DRAM periodically refreshes the charge

in its cells, well in time to preserve data integrity. However, an attacker who

deliberately hits the same rows many times within a refresh interval may cause

the charge leakage to accumulate to the point that a bit �ips in an adjacent row

and modify memory that she does not own. Initially considered a curiosity of

relatively minor importance, researchers have shown that attackers can harness

Rowhammer to completely subvert a system’s security [19, 24, 59, 114, 235, 134,

146].

Clearly, the threat of Rowhammer attacks for smartphones and tablets is par-

ticularly serious, as replacing the memory chips of such devices is not an option.

In addition, power consumption is a prime concern in the mobile world, and

many of the hardware-level solutions (such as ECC memory or higher DRAM

refresh rates) consume more power. Furthermore, even though newer standards

such as LPDDR4 [178] discuss the adoption of Rowhammer mitigations, i.e., Tar-

get Row Refresh (TRR), they do so only as an optional protection mechanism,

thus making LPDDR4 chips vulnerable as well [183, 134].

Existing so�ware defenses are not e�ective Given the challenges of deploy-

ing hardware solutions, the development of e�ective software-based defenses is

particularly important to protect mobile users against Rowhammer attacks. In

our analysis, we systematically explore existing proposals, which fall into two

i
i

i
i

i
i

i
i

7.1. INTRODUCTION

G
U

A
R

D
IO

N

183

categories: techniques that attempt to prevent attackers from triggering bit �ips,

and those that focus on making it impossible for a bit �ip to bring physical mem-

ory into an exploitable state (Section 7.4). We argue that both directions have

limitations, either in terms of practicality (for instance because they require spe-

ci�c hardware features), or worse, in terms of e�ectiveness (as they still allow

for Rowhammer exploitation). We demonstrate this ine�ectiveness by present-

ing novel attacks that circumvent all existing proposed and implemented defense

techniques (Section 7.5).

The need for practical solutions Security solutions need to strike a balance

between security and practicality—a defense against Rowhammer attacks should

not incur unacceptable performance overhead, nor should it severely reduce the

amount of available memory. Conversely, it should be e�ective and hard to

bypass. In this work, we propose Guardion, which e�ectively and e�ciently

blocks all known DMA-based Rowhammer attacks against mobile devices (Sec-

tion 7.6).

Guardion builds on the observation that triggering bit �ips on ARM-based

mobile platforms is facilitated by using uncached memory, accessible through

DMA allocations [134]. Albeit other techniques exist, most are either impracti-

cal or easily addressable on ARM. For example, the cacheflush() system call

that is exposed to userland by the Android kernel, only �ushes up to the Level 2

cache, and thus fails to force repetitive DRAM accesses for a single address. Ad-

ditionally, ARMv8’s unprivileged cache �ush instruction can easily be disabled

by the kernel and thus do not pose a security risk.

We thus explicitly limit our defense to the more generic class of DMA-based

Rowhammer attacks that rely on uncached memory. Doing so has an important

implication for our design: instead of attempting to isolate all sensitive informa-

tion, which is impractical, we can instead isolate only DMA allocations. As we

will show, DMA allocations constitute only a very small fraction of all allocations

in the system, and we can hence a�ord to apply expensive �ne-grained isolation

for each DMA allocation using guard rows. In our design, we isolate DMA allo-

cations from the rest of the system by using two guard rows, one at the top and

another at the bottom. With this scheme, an attacker can no longer use DMA

allocations to trigger bit �ips in any memory page in the system except in the

guard rows. In e�ect, this design defends against Rowhammer by eradicating the

ability to inject bit �ips in sensitive data.

i
i

i
i

i
i

i
i

184 CHAPTER 7. GUARDION

Can GuardION defend against any Rowhammer exploit? No. Guardion

only enforces that DMA-based Rowhammer attacks can no longer �ip bits in an-

other process or kernel memory. Attacks that induce bit �ips by means of cache

eviction sets—another popular Rowhammer technique on x86—are still possible.

The (1) lento, and (2) idiosyncratic nature of these attacks, however, make them

harder to launch in practice. First, increased access times will result in less �ipped

bits at a slower rate. Second, a substantial amount of reverse engineering is re-

quired for such attacks, and this work must be repeated for each target archi-

tecture [50, 134]. Thus, although not stopping all possible attacks, Guardion

reduces the attack surface signi�cantly.

Contributions In summary, we make the following contributions:

• We systematically explore the design of software defenses, and show that

existing proposals are either not practical or not e�ective.

• To back our claims, we present Rampage, a set of DMA-based Rowhammer

attack variants on ARM. Rampage consists of (1) a root exploit, and (2) a

series of app-to-app attacks.

• We introduce Guardion, a software-based defense that prevents DMA-

based Rowhammer attacks. Guardion is simple, e�cient, and has low

memory overhead.

In the spirit of open science, we provide our modi�cations to the Android source

code for implementing Guardion at https://github.com/vusec/guardion.

7.2 Threat Model

We consider an attacker with full control over a zero-permissions holding, un-

privileged Android app that is running on the victim’s device. She seeks to mount

a DMA-based Rowhammer attack, similar to recent work [134], to either (1) es-

calate her privileges to root, or (2) compromise other apps present on the device.

The victim device is hardened against other classes of Rowhammer attacks (e.g.,

GLitch [50]) and has the latest Android security updates installed.

7.3 Background

This section describes the relevant background information about the Rowham-

mer vulnerability and its exploitation. This is meant to provide only a brief intro-

 https://github.com/vusec/guardion

i
i

i
i

i
i

i
i

7.3. BACKGROUND

G
U

A
R

D
IO

N

185

duction, for a more in-depth discussion, we point the interested reader to papers

exclusively focusing on this topic [76, 106, 146].

7.3.1 The Rowhammer Vulnerability

Rowhammer is a hardware fault in dynamic random-access memory (DRAM)

chips. DRAM chips work by storing charges in an array of cells. The charge state

of a given cell encodes a binary value, a memory bit. Cells are organized in rows,
which, at the hardware level, is the smallest unit for a memory access. When

a memory row is accessed, the content of its cells is copied to a so-called row
bu�er. During this copy operation, the row’s cells are discharged, and they are

then recharged with their initial values.

Independently from the row access process, memory cells tend to leak their

charged state (due to their nature), and their content thus needs to be refreshed

regularly. Kim et al. [76] observed that the increasing density of memory chips

makes them prone to disturbance errors due to charge leaking into adjacent cells

on every memory access. In particular, they show that, by repeatedly accessing,

i.e., “hammering,” the same memory row (the aggressor row), an attacker can

cause enough of a disturbance in a neighboring row (the victim row) to cause bits

to �ip. The Rowhammer vulnerability is thus a race against the DRAM memory

refresh: if an attacker can cause su�cient disturbance, the refresh process may

not be fast enough to recharge the cells with their initial values. Kim et al. show

that it is possible to �ip bits in memory by solely performing software-induced

memory read operations, bypassing common memory isolation mechanisms.

7.3.2 Rowhammer Exploitation

Triggering the Rowhammer bug is di�erent than exploiting it. Most bits in mem-

ory are irrelevant for an attacker, as �ipping them would often just trigger a mem-

ory corruption, without obtaining any concrete security advantage. For success-

ful exploitation, the attacker must �rst land a security-sensitive memory page

(e.g., a page owned by the operating system or by another privileged process)

into a vulnerable physical memory page. In the general case, software exploita-

tion of this kind is challenging, and, as outlined by van der Veen et al. [134],

requires the implementation of the following primitives:

Fast uncached memory access The attacker must access the DRAM chip “fast

enough.” One of the biggest challenges here is bypassing CPU caches, which, if

not handled properly, would “block” any read attempt. The attacker thus needs

i
i

i
i

i
i

i
i

186 CHAPTER 7. GUARDION

to either �ush them (to make sure that the next memory read access propagates

to DRAM), or use uncached DMA memory to bypass CPU caches altogether.

Physical memory massaging For successful exploitation, the attacker must

land a security-sensitive page into a physical memory location that is vulnerable

to Rowhammer. This entails that the attacker somehow massages the physical

memory so that she can probabilistically [235] or deterministically [114] deter-

mine where security-sensitive memory pages would land in physical memory.

Physical memory addressing To make Rowhammer exploitation more practi-

cal, the attacker can mount a so-called double-sided Rowhammer attack in which

the victim row gets hammered by not one, but both adjacent rows. While this

increases the chances of triggering bit �ips, it is more challenging: the attacker

must either be able to allocate physically contiguous memory, or determine how

virtual addresses of an unprivileged process are mapped to physical addresses.

In other words, the attacker must determine which virtual addresses map to the

two physical rows adjacent to the victim row. We note that, while this primitive

is not strictly necessary to implement Rowhammer attacks, its implementation

is often required to make these attacks practical.

Security researchers demonstrated that a variety of di�erent system environ-

ments are vulnerable to Rowhammer exploitation. Seaborn et al. [235] were

the �rst to demonstrate two practical attacks: one to gain local privilege escala-

tion, and another to escape native client sandboxes. Other researchers then used

Rowhammer to bypass in-browser JavaScript sandboxes [19, 59], and even to per-

form cross-VM attacks [114, 146]. While most work focuses on the x86 platform,

Van der Veen et al. show that also ARM-based mobile devices are vulnerable to

the Rowhammer bug [134]. This last attack, Drammer, is the most problematic as

it does not rely on any special hardware or software features. It shows that it is

possible to mount a deterministic privilege escalation technique by relying only

on basic memory management functions available in typical modern operating

systems that cannot easily be turned o�.

7.3.3 Android Memory Management

Android, as any other Linux platform, manages physical memory via the buddy

allocator, whose goal is to minimize memory fragmentation [170]. In addition,

starting from Android 4.0, Google introduced ION [229], a high-level interface

that aims at replacing and unifying the several memory management interfaces

exposed by each hardware manufacturer. One of the main features implemented

i
i

i
i

i
i

i
i

7.4. OVERVIEW OF SOFTWARE-BASED DEFENSES

G
U

A
R

D
IO

N

187

Table 7.1. Summary of existing defenses and their limitations when deployed to prevent
DMA-based Rowhammer a�acks on ARM.

Class Defense Practical Secure

¬flips

ANVIL [8] 7 X†

B-CATT [161] 7 7

Disabling the contiguous heap [198] X 7

Pool size reduction [198] X 7

¬massage
CATT [22] 7 7

Separation of lowmem/highmem[198] X 7

Our approach (Guardion) X X

†When implemented to monitor DRAM accesses instead of cache misses.

by ION is a number of DMA Bu�er Management APIs, which allows userland

apps to obtain uncached memory. ION organizes its memory pools in several

in-kernel heaps, such as the kmalloc heap (SYSTEM_CONTIG) and the system heap
(SYSTEM). These heaps allocate memory at di�erent memory locations and, in

general, behave di�erently. For example, van der Veen et al. [134] observed how

an app can use the kmalloc heap to obtain physically contiguous memory (now

disabled by Google [198]), while this is not possible when using the system heap.

7.4 Overview of So�ware-based Defenses

Proposed software-level Rowhammer mitigations try to (1) prevent Rowhammer

from triggering bit �ips, or (2) prevent massaging of physical memory into an

exploitable state (i.e., bit �ips in security-sensitive data structures). We now

discuss these defenses in more detail and expose their limitations in terms of

practicality—What are the limitations for deploying this technique in practice?—

and security—Does this technique stop all attacks? Table 7.1 summarizes our dis-

cussion and shows that no previous solution is both practical and secure.

7.4.1 Preventing Bit Flips (¬flips)

ANVIL [8] is a two-step mitigation technique that relies on the processor’s per-

formance monitoring unit (PMU) to (1) monitor last-level cache misses (LLC

misses). If the number of LLC misses per time period exceeds a prede�ned value,

it marks the o�ending load/store instructions as a potential Rowhammer attack.

It then (2) instructs the PMU to also record virtual addresses accessed, and data

sources used by those instructions. ANVIL analyzes the results of the latter, and,

i
i

i
i

i
i

i
i

188 CHAPTER 7. GUARDION

26,000

28,000

30,000

32,000

0 5 10 15 20 25

U
ni

qu
e

bi
t

fl
ip

s

Days

Flip count

Figure 7.1. Number of unique bit flips found while repeatedly hammering the same 4 MB
chunk using double-sided Rowhammer on a Nexus 5 over a time-period of 25 days.
Results were obtained by using Drammer’s source code [244].

if it concludes that a Rowhammer attack is ongoing, it accesses neighboring rows

to force an early refresh, e�ectively preventing any bit from �ipping.

ANVIL could prevent DMA-based Rowhammer attacks by monitoring DRAM

accesses instead of LLC misses. Such a defense would be secure, as it would

successfully prevent bits from �ipping. We were unsuccessful, however, in our

search for PMU features on ARM that would allow an e�cient implementation

of ANVIL’s second stage: we were unable to locate any feature that allows us to

keep track of which virtual or physical addresses are read from or written to. As

such, we conclude that ANVIL is impractical as a mitigation against DMA-based

Rowhammer attacks.

B-CATT [161] instructs the bootloader to run a Rowhammer test over the en-

tire physical memory to identify memory pages with vulnerable cells. It then

instructs the operating system to mark these pages as unavailable, forcing the

system to never use them. This e�ectively removes the ability of an attacker to

induce bit �ips.

To evaluate B-CATT’s security guarantees, we ran an experiment in which

we search for bit �ips on a Nexus 5 device by repeatedly performing double-sided

Rowhammer on the same 4 MB chunk of contiguous memory. We ran our test

for little less than a month while keeping track of each bit �ip. Figure 7.1 shows

our results: it depicts the number of unique bit �ips over time, where a bit �ip

i
i

i
i

i
i

i
i

7.4. OVERVIEW OF SOFTWARE-BASED DEFENSES

G
U

A
R

D
IO

N

189

is unique if the physical address at which it was reported has not been �ipped

during an earlier round. Our results show that unique �ips indeed do increase

over time, and proves that mitigations based on blacklisting vulnerable memory,

such as B-CATT, do not scale and are inherently insecure. Furthermore, it shows

that any technique that relies on observations and thresholds derived during a

testing period, can be subverted as the attacker can trigger di�erent bit �ips dur-

ing runtime. This is on par with related work that discusses the importance of

di�erent bit patterns unique to every device when hammering [183, 119]), which

makes generic hammering techniques not always e�ective in �nding all vulner-

able memory regions.

In parallel, there are many issues that make B-CATT impractical. First, since

devices may average close to one bit �ip per page [134, 146], B-CATT would have

to disable all of physical memory for those. Second, blacklisted pages contribute

to physical memory fragmentation, making it harder—or impossible—for apps

that require physically contiguous memory to run properly. Third, doing a single

sweep of a device’s physical memory may take over a day to complete—as we

experienced when scanning the entire 4 GB of LPDDR4 memory of a Google

Pixel, which is in line with observations of related work [146].

Disabling the contiguous heap was Google’s �rst reaction to Drammer [134]

and is a third defense that tries to prevent the attacker from �ipping bits. In the

November 2016 security update for Android, Google disabled the kmalloc heap,

removing an attacker’s primitive to allocate contiguous memory [198]. Without

access to the pagemap interface—a special �le in procfs for retrieving physi-

cal addresses—this update e�ectively disables an attacker’s ability of performing

double-sided Rowhammer, greatly reducing the number of bits she can �ip [19].

As this was Google’s �rst attempt at mitigating Drammer, disabling the con-

tiguous heap is proven to work in practice on a variety of devices. We will show

in Section 7.5, however, that it is not secure: it possible to implement primitives

for obtaining contiguous memory allocations even when using the regular sys-
tem heap (which does not guarantee the allocation of contiguous memory). In

concurrent work, Frigo et al. [50] present another side channel for detecting con-

tiguous memory.

Pool size reduction was part of a second round of Drammer mitigations by

Google which reduced the number of internal system heap pools to two. Before,

ION could allocate and pool memory using many di�erent pool sizes (4 KB, 8 KB,

16 KB, . . . , 4 MB). If one requested a large chunk of memory, say 4 MB, from an

empty pool, ION would request these large chunks from the underlying allocator

directly, increasing the likelihood for an attacker to obtain physically contiguous

i
i

i
i

i
i

i
i

190 CHAPTER 7. GUARDION

memory. By reducing the maximum pool size to 64 KB, the attacker is more likely

to obtain fragmented memory pieces that are not physically contiguous.

Although this is a proven practical solution, it does not eradicate the problem

at its root. We show in Section 7.5 how a determined attacker can still force

the system to allocate contiguous memory to launch double-sided Rowhammer.

Moreover, we show how limiting system allocations to low orders (up to 64 KB)

is not e�ective when memory is not heavily fragmented. In fact, a request for

200 MB would get split up in many 64 KB allocations, some of which will very

likely be allocated right next to each other in physical memory.

7.4.2 Preventing Physical Memory Massaging (¬massage)

CATT proposes a static partitioning of physical memory between di�erent secu-

rity domains [161]. In principle, its design allows for an arbitrary �nite number

of security domains. However, only a prototype for the special case of two se-

curity domains was implemented and evaluated: lowmem (kernel memory) and

highmem (user memory). By design, this system guarantees that, under any cir-

cumstance, the kernel never touches userland memory, and vice versa.

Modern operating system kernels are designed to make all possible resources

available to an app or to the kernel itself. For example, in Linux, the mem-

ory management code moves physical memory between zones (e.g., highmem

and lowmem) to alleviate memory pressure in them, as a function of the cur-

rent workload. Due to its static partition, CATT severely limits this capability,

making it unlikely to be used in practice. Moreover, as acknowledged by the au-

thors, the generalization of CATT to more than two security domains presents

a number of signi�cant practicality and complexity challenges. For example, to

prevent app-to-app attacks that we will discuss in Section 7.5, CATT must enable

as many domains as there are apps installed. To support this, the prototype must

be able to pass additional arguments to the kernel’s memory allocator to specify

the security domain of the process requesting the allocation. This would result in

memory fragmentation, which would in turn lead, among other problems, to per-

formance issues: the memory allocator must scan the memory to �nd a “suitable”

memory region for each memory allocation.

Not only is CATT impractical, recent work also demonstrates that so-called

double-ownership kernel bu�ers (e.g., video bu�ers that are shared between user

and kernel) allow an attacker to bypass CATT’s security guarantees [163].

Separation of highmem/lowmem was part of Google’s mitigations against

Drammer. Android now enforces that the system heap—which is exposed to

i
i

i
i

i
i

i
i

7.5. RAMPAGE: BREAKING THE STATE-OF-THE-ART

G
U

A
R

D
IO

N

191

userland apps—only returns memory pages from highmem, separating attacker-

controlled memory for critical data structures in lowmem.

The highmem/lowmem separation su�ers from the same issues as described

before. Additionally, we show in the next section that an attacker can allocate

many ION chunks to deplete the highmem pool and force the kernel to serve

new requests from lowmem. Thus, despite Android’s latest security updates, an

unprivileged app can still force the system to allocate userland pages in lowmem.

7.5 RAMpage: Breaking the State-of-the-Art

This section elaborates on the security limitations of existing defenses as dis-

cussed in the previous section. We document new attack strategies, showing that

the defense mechanisms that appear to be practical are not e�ective for prevent-

ing Rowhammer attacks. We �rst show how it is possible to mount Rowhammer-

based attacks even when ION memory allocations are not contiguous and served

from highmem. Next, we discuss several app-to-app attack scenarios that show

kernel-owned data is not the only target memory to protect.

7.5.1 Exploiting Non-Contiguous Memory

Before Drammer, the ION subsystem allowed userland apps to allocate a large

number of contiguous chunks. As described previously, to mitigate Drammer,

Google disabled the ION kmalloc heap. The ION system heap, however, is still

available. This heap has two features that make the Drammer attack more chal-

lenging: (1) ION allocations from this heap are no longer guaranteed to be phys-

ically contiguous, preventing attackers from performing double-sided Rowham-

mer; (2) the system heap allocates memory from a di�erent zone (highmem, as

opposed to lowmem for the kmalloc heap).

We now detail our �rst Rampage variant, r0: a reliable Drammer implementa-

tion that shows how disabling contiguous memory allocations does not prevent

Rowhammer-based privilege escalation attacks.

Exhausting the system heap We observe that once ION’s internal pools are

drained, subsequent allocations are handled directly by the buddy allocator. In

this state, we rely on the predictable behavior of the buddy allocator to get con-

tiguous pages [134]. With access to contiguous chunks of memory, we then per-

form double-sided Rowhammer to �nd exploitable bit �ips. However, as men-

tioned, the system heap initially allocates memory from highmem while the in-

teresting data structures reside in the lowmem zone. To force lowmem alloca-

i
i

i
i

i
i

i
i

192 CHAPTER 7. GUARDION

tions, we simply continue allocating memory until no highmem is left (which

we detect by monitoring procfs). Once this is the case, the kernel serves sub-

sequent requests from lowmem, allowing us to �nd bit �ips in physical memory

that may later hold a page table.

Shrinking the cache pool Armed with an exploitable bit �ip in lowmem, we

perform Phys Feng Shui to trick the kernel in storing a page table in the vul-

nerable page. For this, we need to free the vulnerable row so that the buddy

allocator may use it as a page table later. Simply releasing the chunk, however, is

not su�cient: after freeing, it ends up in the ION memory pool. We thus require

a primitive to shrink system heap pools.

On Android, the low-memory killer (LMK) [228] handles low-memory con-

ditions that arise in the system before the more severe Linux Out-of-Memory

(OOM) killer is triggered. The LMK works similarly to the OOM killer, but

keeps track of additional information, such as various shrinkers that are avail-

able. Shrinkers are registered by memory subsystems or drivers that reserve an

amount of memory from the system RAM [191]. When the system is close to

running out of memory, the LMK calls the registered shrinkers to release and

regain cached memory.

We now construct a primitive to release physical memory of the system heap

pools back to the kernel: (1) we read from /proc/meminfo to learn how much

free memory is available and use this to (2) trigger a mmap allocation from user-

land which is large enough to trigger the LMK. This indirectly forces the ION

subsystem to release its preallocated cached memory, including the row with the

vulnerable page.

Rooting a mobile device By combining our primitives with the Phys Feng

Shui methodology of Drammer [134], we implement the remaining steps of the

attack (i.e., �nding exploitable chunks and landing page tables in vulnerable lo-

cations) and develop a root exploit. We were successful in mounting our proof

of concept against an LG G4 running the latest version of Android (7.1.1. at the

time of our experiments).

The implementation of these steps involves solving a number of engineer-

ing challenges that, from a conceptual point of view, are similar to what was

presented in Drammer.

i
i

i
i

i
i

i
i

7.5. RAMPAGE: BREAKING THE STATE-OF-THE-ART

G
U

A
R

D
IO

N

193

7.5.2 Exploiting System-wide Isolation

In this section, we detail how defense solutions that only protect speci�c parts

of system memory (e.g., the CATT prototype) do not provide a comprehensive

protection mechanism. We present three more Rampage variants that illustrate

how one can bypass these defenses.

ION-to-ION (r1) In this scenario, we use ION allocations to corrupt ION bu�ers

that belong to another app or process. We start with allocating ION memory to

search for exploitable bit �ips. Next, we release the vulnerable page to which this

bit belongs so that our victim may reuse it. Depending on our victim process, we

must then either wait for it to allocate ION memory, or we can trigger allocations

by sending an app-speci�c intent.
To investigate the feasibility of this attack, we developed a proof-of-concept

in which we trigger bit �ips in ION memory that is in use by a victim process.

During a real attack, an attacker will likely target a privileged app, such as the

media server, in which case she must investigate what bits are sensitive to �ip.

We acknowledge that it may not be trivial to perform such an attack, and we

believe this to be an interesting direction for future research. However, we argue

that this scenario and our proof of concept provide a concrete example showing

how current defense mechanisms are not comprehensive enough.

CMA-to-CMA a�ack (r2) The Contiguous Memory Allocator (CMA) is an-

other kernel mechanism to implement DMA-like primitives [189, 190, 207] and

thus provides another venue for attackers. Mounting CMA attacks is technically

more challenging since it uses a bit map for deciding allocations: depending on

the internal state of the map, the victim may not get the same chunk of memory

that the attacker releases after the templating, i.e., the probing for vulnerable

memory locations. However, the attacker can exhaust the CMA bit map before re-

leasing the vulnerable range to ensure that the victim reuses a vulnerable chunk.

CMA-to-system a�ack (r3) Although challenging, it is also possible to corrupt

system memory from CMA-allocated memory, leading to our last Rampage vari-

ant. In fact, the buddy allocator is designed to migrate pages from the CMA

heap when the system is close to out-of-memory situations. These pages can

be claimed back at any time by the CMA heap (in other words, they are mov-

able). We note that this attack cannot directly target page tables (because they

are unmovable); however, the attacker might be able to target other sensitive

system-owned data structures (e.g., struct cred).

i
i

i
i

i
i

i
i

194 CHAPTER 7. GUARDION

7.6 GuardION: Fine-grained Memory Isolation

As discussed, the main reason for which defenses fail in practice is because they

aim to protect all sensitive information by making sure that they are not a�ected

by Rowhammer bit �ips. Hence, they are either impractical or they miss cases

(e.g., variants r1-r3). As Rampage shows, ARM devices are still widely exposed,

and providing an adequate software protection is particularly pressing.

We propose Guardion, a mitigation against DMA-based Rowhammer ex-

ploits on mobile devices. Instead of trying to protect all physical memory, we

focus on limiting the capabilities of an attacker’s uncached allocations. As we

will show in Section 7.7, these only constitute a small fraction of all allocations

in the system. We can hence a�ord to apply expensive �ne-grained isolation for

each DMA allocation. Guardion isolates such bu�ers with two guard rows, one

at the ‘top’ (the �rst n bytes before an allocation), and another at the ‘bottom’

(n additional bytes starting at the last address of the allocation). This enforces

a strict containment policy in which bit �ips that are triggered by reading from

uncached memory cannot occur outside the boundaries of that DMA bu�er. In

e�ect, this design defends against Rowhammer by eradicating the ability of the

attacker to inject bit �ips in sensitive data.

Note that Guardion works under the assumption that bit �ips never occur in

memory pages that are physically more than one row ‘away’ from the aggressor

rows. This is in the same spirit as other defenses and we believe a sane assump-

tion: such �ips have never been reported before, and the electrical properties of

Rowhammer make this unlikely to ever occur. Additionally, our current proto-

type assumes that physical addresses are linearly mapped to DRAM addresses.

While this is true for most ARM-based chipsets [106, 134], a next version of

Guardion should use a kernel allocator that is aware of DRAM geometry.

We now describe our implementation of this �ne-grained isolation for the

Android kernel. Speci�cally, we modify three allocators that potentially hand

contiguous uncached memory to userland apps: the ION contiguous heap, the

ION system heap, and the contiguous memory allocation heap (i.e., the CMA

heap). In all cases, we need modi�cations in the allocation and deallocation rou-

tines, which we now discuss in more detail.

7.6.1 Isolating ION’s Contiguous Heap

Google disabled ION’s contiguous heap, the kmalloc heap (SYSTEM_CONTIG), as

part of their e�orts to thwart the Drammer attack. This was possible since most

devices do not require physically contiguous memory allocations to be available

i
i

i
i

i
i

i
i

7.6. GUARDION: FINE-GRAINED MEMORY ISOLATION

G
U

A
R

D
IO

N

195

alloc(size) *ptr
free(ptr, size)

alloc(size+2×RS) *ptr+RS
free(ptr-RS, size+2×RS)

sizerow size row size

(b) PROTECTED(a) UNPROTECTED

size

ptr ptr

Figure 7.2. Allocations on ION’s contiguous heap (a) without and (b) withGuardion (RS = row
size).

for regular userland apps. Device con�gurations that do require this, however,

remain exposed. Since isolating these allocations is simple, we explore them �rst

before describing our more elaborate e�orts for isolating ION’s system and CMA

heaps.

For each request, the contiguous heap allocator takes the requested size and

computes the smallest buddy order that satis�es this. The allocator then requests

the required number of pages from that buddy order. To free a previously allo-

cated bu�er, the allocator simply returns the pages back to the buddy allocator.

To isolate bit �ips in these bu�ers, we allocate two guard rows that sandwich the

allocation as shown in Figure 7.2. At allocation time for a given size s, we request

two extra rows, i.e., s+ 2× RS (RS being the row size), and return the bu�er

starting after the guard row to the user. Note that the user process will not have

access to these guard rows, as they are never mapped to virtual memory.

For this to work, we need to round up the allocation size to at least the row

size. Hence, to protect a 4 KB bu�er, we need to allocate 3 × 64 KB (assuming a

row size of 64 KB). Fortunately, at runtime, many requested bu�ers have a larger

size, amortizing the overhead of guard rows. Further, given that DMA bu�ers

constitute a small fraction of an entire app’s memory, this overhead becomes

negligible as we will show in Section 7.7.

7.6.2 Isolating ION’s System Heap

There are two main limitations with ION’s contiguous heap: (1) it is not possi-

ble to satisfy requests if physically contiguous memory is not available due to

fragmentation, and (2) the interaction with the buddy allocator is expensive. To

address these limitations, the system heap (SYSTEM) provides its users with virtu-

ally contiguous memory backed by memory pools of various sizes.

Figure 7.3(a) shows how the system heap satis�es an allocation of a given size

by stitching multiple smaller physically contiguous allocations together. These

i
i

i
i

i
i

i
i

196 CHAPTER 7. GUARDION

X Y Z X Y Z

alloc(size+2N×RS) *ptr+RS
free(ptr-RS, size+2N×RS)

alloc(size) *ptr
free(ptr, size)

(a) UNPROTECTED (b) PROTECTED

ptr ptr

Figure 7.3. Allocations on ION’s system heap (a) without and (b) with Guardion (N = number
of pool members, size = X+Y+Z, RS = row size).

smaller allocations are satis�ed from pools with pre-de�ned sizes. The system

heap makes an attempt to use pools of the largest suitable size before resorting

to pools with smaller sizes to reduce management overhead for each allocation.

These pools act as a cache of the buddy allocator in order to improve the alloca-

tion performance. Whenever the system is under memory pressure, free memory

from these pools is reclaimed and given back to the buddy allocator.

Currently, in order to thwart Drammer, Android only enables pools of size

4 KB and 64 KB, instead of previously-supported larger sizes. Since the size of

a memory row is usually 64 KB on ARM, it was expected that attackers cannot

allocate large-enough physically contiguous bu�ers to perform the templating

step reliably. We showed that this is not the case in Section 7.4 and we now

discuss how we can protect the system heap with Guardion.

We extend our design for the contiguous heap to protect each physically con-

tiguous allocation from each pool, as depicted in Figure 7.3(b). We extended the

pool allocation and deallocation routines to isolate every pool member, similar

to how we isolated each allocation from the contiguous heap. Our modi�cations

are mostly straightforward, given that we do not introduce an additional state in

the pool allocator. During free operations, we return the extra guard rows back

to the system.

The overhead of isolating uncached allocations in the system heap depends

on the number of allocations from the pools for each request. Given that we are

isolating each sub-allocation, we now safely re-enable pools with larger sizes.

On top of reducing per-allocation management overhead in the system heap, en-

abling larger pools reduces the overhead of Guardion given that it reduces the

number of sub-allocations for each request.

i
i

i
i

i
i

i
i

7.6. GUARDION: FINE-GRAINED MEMORY ISOLATION

G
U

A
R

D
IO

N

197

row size

allocated blacklisted free

alloc(size) *ptr
free(ptr, size)

ptr

size

(a) UNPROTECTED

row size

alloc(size) *ptr
free(ptr, size)

size

(b) PROTECTED

ptr

Figure 7.4. Allocations on ION’s CMA heap (a) without and (b) with Guardion.

7.6.3 Isolating ION’s CMA Heap

While it was possible to disable ION’s contiguous heap for newer mobile devices,

there are still drivers that may require physically contiguous memory allocations.

These allocations, however, mostly happen in the kernel and are handled by the

CMA heap (CMA). The CMA heap has a statically-de�ned size which is reserved

in physical memory at boot time. These pages may be used by other users when

necessary but can always be claimed back by the kernel. While the CMA heap

is currently only used by the kernel, we found that recent Android versions still

expose it to unprivileged apps. Although we did not �nd any userland app on a

Google Pixel that requires it, we still implement isolation for this heap to provide

complete protection.

Figure 7.4(a) shows how the CMA allocator handles requests using a bit map

that tracks free memory in the CMA region. The CMA allocator scans this bit

map to �nd the �rst �t for a requested allocation size. This means that over time,

this bit map gets fragmented. To provide isolation in this heap, we follow the

following strategy: we blacklist all odd rows in the bit map during initialization.

This provides isolation for all allocations that are smaller than the size of the row.

To support allocations larger than the row size, we scan the bit map to �nd a �rst

�t assuming we can allocate blacklisted rows. We use a secondary bit map for

the rows to keep track of odd rows that are allocated as part of a large allocation

and maintain it during free operations of these large allocations. Figure 7.4(b)

shows an isolated allocation from the CMA heap with Guardion in place.

i
i

i
i

i
i

i
i

198 CHAPTER 7. GUARDION

7.7 Evaluation

We now evaluate Guardion under several aspects: security, performance, and

ease of adoption.

7.7.1 Security Evaluation

Guardion provides an isolation primitive that makes it impossible for attackers

to use uncached DMA allocations to �ip bits in memory that is in use by the ker-

nel or any userland app. Within our threat model, where attacks are only possible

by attacking uncached memory, Guardion protects all known Rowhammer at-

tack vectors, and, to the best of our knowledge, no existing technique can bypass

it. We verify this by mounting the exploits detailed in Section 7.5 which all failed:

we were unable to �ip bits in the memory of another process.

7.7.2 Performance and Memory Footprint

We now evaluate the overhead of Guardion, focusing on both performance and

memory overhead.

Dataset To evaluate Guardion, we execute 22 Android benchmark apps that

we selected as follows: (1) we built a dataset of 135 benchmark apps, obtained by

searching for the benchmark keyword on Google Play; (2) by pro�ling the ION

subsystem, we found that only 28 of them use uncached DMA memory; (3) we

discarded two of them as they perform the same tests, one because it does not

produce a score, and three because they do not produce reproducible numbers

for our baseline.

We run each benchmark app thrice on a Google Pixel running Android 7.1.1

without Guardion (baseline) and reboot the device after each execution. We

then enable Guardion and repeat this experiment. We compute the median over

the three runs and use this as the benchmark score. Since some benchmarks re-

port higher scores for better performance, while for others a lower score indi-

cates better performance, we normalize the scores across benchmarks. Finally,

we calculate the geometric mean (geomean) over all benchmark results.

Performance overhead Figure 7.5 shows the overall performance impact of

Guardion. In particular, the �gure shows the relative performance compared to

the baseline, where a positive value indicates an improvement, while a negative

value indicates a performance degradation.

In the worst case, Guardion results in a performance degradation of 6.6%,

i
i

i
i

i
i

i
i

7.7. EVALUATION

G
U

A
R

D
IO

N

199

-10

0

10

20

30

Basemark ES 2.0

Basemark OS II

Comparison

BenchmarkAndroid

Billion Counter

Bonsai

Graphics

H264
HardBench

Kassja

KFS
LukaLukaBench

NextM
ark

OESK
OM

EGA

Phone Benchmark

Pi Benchmark

Real Benchmark

Relative Benchmark

RinRinBench

SQLite

Unity Bench

R
el

at
iv

e
pe

rf
or

m
an

ce
(%

)

Figure 7.5. Guardion performance analysis. The numbers show the relative improvement
(positive number) or degradation (negative number) of the performance according
to each benchmark app.

which we believe is still acceptable. In most cases, however, we see a perfor-

mance improvement, likely caused by the fact that Guardion allows us to revert

Google’s second series of patches, which reduced pool size as outlined in Sec-

tion 7.4. This allows the ION subsystem to use higher order allocations again in

case a process �les a request for DMA memory larger than 64 KB: for example,

the Kassja benchmark triggers many 2 MB uncached allocations. With large or-

der allocations enabled, each such request triggers the ION subsystem to call the

underlying page allocator only once, at most (if the request cannot be processed

by the pool). Without Guardion, however, the request would get split up in

2MB
64KB

= 32 allocations, each one introducing additional overhead.

Memory overhead Figure 7.6 shows the memory overhead of Guardion. We

determine the memory footprint of an app by modifying the ION subsystem to

log every allocation and free operation, including the kernel a�ected virtual ad-

dresses. This way, we can map each allocation to its associated free operation.

In general, memory overhead is negligible, especially when considering that

modern devices usually have at least 2 GB of RAM. Interestingly, the RealBench

app shows a signi�cant overhead of 46.2 MB, which is much higher than the

average. Upon investigation, we determine that this is because the app pressures

the uncached DMA, allocating about 190.2 MB during the test.

Impact on UI performance and everyday usage Google measures UI perfor-

mance of apps mainly in terms of frames per second (fps) and number of “janky,”

i
i

i
i

i
i

i
i

200 CHAPTER 7. GUARDION

0

10

20

30

40

50

Basemark ES 2.0

Basemark OS II

Comparison

BenchmarkAndroid

Billion Counter

Bonsai

Graphics

H264
HardBench

Kassja

KFS
LukaLukaBench

NextM
ark

OESK
OM

EGA

Phone Benchmark

Pi Benchmark

Real Benchmark

Relative Benchmark

RinRinBench

SQLite

Unity Bench

M
em

or
y

ov
er

he
ad

(M
B

)

Figure 7.6. Memory overhead (in MB) of DMA isolation with Guardion.

i.e., delayed or dropped, frames [200]. A consistent rate of 60fps is considered

ideal for smooth UI animations. Android provides measurements of these values

for a speci�c app through adb shell dumpsys gfxinfo <packagename>. We

evaluate the performance of web browsing with Google Chrome on the Google

Pixel with and without Guardion and aggregated the results [241]. Averaged

over �ve runs each, we did not notice any signi�cant di�erences in UI perfor-

mance: 22.4 out of 266.8 (8.4%) and 22.0 out of 279.0 (7.9%) frames were janky

without and with Guardion, respectively, with the frame rate remaining con-

stant at 60fps.

Finally, we evaluated the impact of Guardion on day-to-day device use. For

this test, we performed several “everyday” operations on a Google Pixel with

and without Guardion. These operations include taking a photo, shooting and

watching a video, watching a video through the YouTube app, making a phone

call, making a video call through the Skype app, and browsing the web with

Chrome. In all scenarios, we did not notice any di�erence. Moreover, we did not

notice any sign of slowdown or instability.

7.7.3 Patch Complexity and Adoption

We believe that it is easy to integrate Guardion with the current Android code

base. In particular, our prototype implementation for Android 7.1.1 consists of

only 844 lines of code. The patch is mostly contained in the ION subsystem, and

adds functionality to the bit map data structure of the kernel. Touching only 9

�les in the Android source code, it is thus well contained. We also note that a

signi�cant part of our patch (422 lines, 5 �les) relates to augmenting the bit map

i
i

i
i

i
i

i
i

7.8. RELATED WORK

G
U

A
R

D
IO

N

201

data structure to protect the CMA heap, which we believe should not be exposed

to userland apps in the �rst place (thus possibly reducing the size of our patch

even more).

We are currently in the process of submitting our patch to Google, and we

hope that Google adopts our proposal either as a security patch for existing ver-

sions or in newer versions of Android.

7.8 Related Work

This section provides an overview of related work in the �eld of Rowhammer

exploitation and prevention that were not yet discussed in Section 7.3.2 and Sec-

tion 7.4.

7.8.1 Rowhammer A�acks

After Kim et al. [76] performed the �rst systematic study on the Rowhammer

hardware fault, and Seaborn et al. [235] demonstrated the �rst practical attacks,

Qiao et al. [112] showed how to use non-temporal access instructions such as

movnti, to bypass the cache (instead of relying on clflush, which was disabled

in the Google Native Client browser sandbox following the �rst Rowhammer at-

tacks). Aweke et al. [8] showed that it is possible to trigger bit �ips without using

special instructions: they show how an attacker can force the cache to invalidate

its content by accessing memory addresses belonging to the same cache eviction

set. Another recent technique abuses Intel’s Cache Allocation Technology (CAT)

to reduce the number of active ways in the last-level cache, which in turn signi�-

cantly decreases the number of memory accesses required to trigger a bit �ip [3].

As discussed in Section 7.3.2, related work has also shown how the Rowhammer

vulnerability can be exploited in a number of di�erent scenarios [19, 59, 114, 134,

146].

7.8.2 Rowhammer Defenses

The aforementioned attacks have demonstrated the severity of the Rowhammer

vulnerability and prompted the research community to propose a number of de-

fense mechanisms, both in hardware and in software.

Hardware-level defenses One of the most obvious defense mechanism is the

production of memory chips that do not su�er from the Rowhammer vulnera-

bility. Kim et al. [76] discuss the various aspects that could be improved: for

i
i

i
i

i
i

i
i

202 CHAPTER 7. GUARDION

example, one could increase the row refresh rate. The DDR3 standard [177] spec-

i�es that rows should be refreshed at least every 64 ms, while Kim et al. suggest

to refresh the rows at least every 32 ms. Other proposals are Error-Correcting

Code (ECC) memory and Target Row Refresh (TRR). One last protection mecha-

nism is PARA [76], which probabilistically activates rows adjacent to a potential

victim row.

Unfortunately, all these techniques have signi�cant limitations. First, many

of these techniques rely on hardware modi�cations: ECC and TRR require the

production of new memory chips, while PARA requires a change in the mem-

ory controller. This makes their deployment less practical, mainly because these

chips would be more expensive, would require new development and production

pipelines, and they cannot be easily adopted by existing systems, especially mo-

bile devices. Moreover, newer standards such as LPDDR4 [178] already discuss

the adoption of TRR, but only as an optional protection mechanism, thus leav-

ing LPDDR4 chips still vulnerable to Rowhammer. Protecting mobile devices

through hardware protection mechanisms is even more challenging due to the

energy consuming nature of these mechanisms and the importance minimizing

the device’s battery consumption.

Second, these mechanisms are not always e�ective, even when deployed. For

example, Aweke et al. [8] show that they could perform Rowhammer exploitation

under 32 ms, making the faster refresh rate ine�ective. Instead, mechanisms

like ECC memory have the limitations of protecting only from one-bit memory

corruption, which is not enough since Kim et al. could induce multiple bit �ips.

These limitations provided strong incentives to develop software-level defenses.

So�ware-level defenses The research community started to propose software-

based solutions only recently. The �rst concrete solution is ANVIL [8], which

we discussed in Section 7.4. Unfortunately, ANVIL is not applicable to mobile

devices. Furthermore, we discussed B-CATT and CATT [22, 161], as well as

Google’s patches in reaction to Drammer, in Section 7.4, and demonstrated why

they are not e�ective in Section 7.5.

7.9 Conclusion

In recent years, the Rowhammer vulnerability gathered a lot of attention from

both the academic and industrial community. While researchers have demon-

strated exploits for a range of devices in a variety of settings [19, 59, 76, 114,

235, 134, 146], the Drammer attack on mobile devices [134] is particularly wor-

i
i

i
i

i
i

i
i

7.9. CONCLUSION

G
U

A
R

D
IO

N

203

rying, since it allows for a deterministic attack on very popular systems, by just

relying on basic memory management features. Given that it is impossible to

perform hardware upgrades on these devices, there is a clear need for e�ective

and e�cient software-based defenses.

In this chapter, we showed that existing software mitigations do not solve

the problem: they are either impractical to deploy, or do not provide adequate

protection. To back our claims, we presented Rampage, a set of DMA-based

Rowhammer attacks against the latest Android OS. As a mitigation, we pro-

posed Guardion, a lightweight, software-only defense to prevent Rowhammer

exploitation on mobile devices. Our evaluation shows that Guardion introduces

negligible memory overhead, improves performance compared to Google’s mit-

igation in reaction to previous attacks, and prevents DMA-based Rowhammer

attacks, even when considering app-to-app attacks. We release our modi�ca-

tions as open source, and are in the process of sharing our patches with Google,

hoping they will adopt our proposal in newer versions of Android.

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

C
O

N
C

LU
SI

O
N

8 Conclusion

Today, three decades after Robert Morris used one to accidentally break the In-

ternet, memory errors are still one of the primary threats to the security of our

systems. Granted, years of security research attribute to the fact that attacks are

now more sophisticated than ever — recent Pwn2Own exploits not rarely require

a handful of vulnerabilities — they still occur on a regular basis. In this thesis, we

studied, and tried to advance computer security defenses that focus on prevent-

ing exploits that stem from memory errors. We intersected this domain from two

dimensions: (1) we studied code-reuse attacks and defenses, and (2) we dissected

the Rowhammer bug and studied its impact on mobile platforms. In summary,

this dissertation provides the following key results.

1. Context-sensitive CFI. We presented practical Context-sensitive Control-
Flow Integrity (CCFI). While CCFI can signi�cantly enhance the security of

state-of-the-art defenses against control-�ow diversion attacks, it has long

been perceived as ine�cient and impractical for real-world adoption. We

showed how we can e�ectively address the three fundamental challenges

towards fast and practical CCFI — e�cient path monitoring, analysis, and

veri�cation — in a realistic way on commodity platforms.

2. Forward-edge CFI. We presented a forward-edge Control-Flow Integrity
(CFI) and Control-Flow Containment (CFC) solution to stop advanced code-

reuse attacks. Based on conservative static binary-level analysis to derive

both target-oriented and callsite-oriented control-�ow invariants, our ap-

proach applies strong security policies at runtime without the possibility

of breaking the program’s original intentions. Our work relies on target-

oriented invariants to enumerate legal callsite targets and detect attacks

that transfer control to illegal targets (akin to traditional CFI, but with

much stronger binary-level invariants). In addition, we use callsite-oriented

invariants to invalidate illegal function arguments at each callsite and con-
tain attacks that rely on type-unsafe function argument reuse: the CFC pro-

205

i
i

i
i

i
i

i
i

206 CHAPTER 8. CONCLUSION

tection technique. CFC further improves the quality of our target-oriented

invariants, resulting in the strictest binary-level CFI solution to date.

3. C++ vtable hijacking. We presented a practical binary-level defense mech-
anism against C++ vtable hijacking attacks. Unlike prior work that restricts

the target set of virtual callsites, our approach protects objects at creation
time and restricts their usage to virtual calls that are reachable by the ob-

ject. This sidesteps accuracy problems faced by prior work while simulta-

neously extending the threat model to include use-after-free attacks. Our

work provides improved correctness guarantees by handling false positives

at vcall veri�cation time. We protect applications from modern C++ code-

reuse attacks, including whole-function reuse.

4. 10 years of code-reuse attacks. We presented a runtime gadget-discovery
framework based on constraint-driven dynamic taint analysis. We showed

that by considering dynamic analysis — opposed to the static analysis that

we used for the past decade — even low-e�ort attackers can �nd useful

defense-aware gadgets to craft practical code-reuse attacks. Our frame-

work found gadgets compatible with state-of-the-art defenses in many real-

world programs. We also presented an nginx case study, showing that an

attacker armed with our framework can �nd useful gadgets and craft ex-

ploits that comply with the restrictions of strong defenses such as CPI and

context-sensitive CFI. Our e�ort showed that, to su�ciently reduce the at-

tack surface against a dynamic attack model, we must combine multiple

state-of-the-art code-reuse defenses or, alternatively, deploy more heavy-

weight defenses at the cost of higher overhead.

5. Mobile Rowhammer attacks. We presented deterministic Rowhammer
attacks on mobile platforms. We demonstrated that powerful deterministic
Rowhammer attacks that grant an attacker root privileges on a given sys-

tem are possible, even by only relying on always-on features provided by

commodity operating systems. We presented an implementation of our at-

tack on the Android/ARM platform. Not only does our attack show that

practical, deterministic Rowhammer attacks are a real threat for billions

of mobile users, but it is also the �rst e�ort to show that Rowhammer is

even possible at all (and reliably exploitable) on any platform other than

x86 and with a much more limited software feature set than existing attacks.

Moreover, we demonstrated that several devices from di�erent vendors are

vulnerable to Rowhammer, showing that practical Rowhammer attacks are

a serious threat.

i
i

i
i

i
i

i
i

FUTURE DIRECTIONS

C
O

N
C

LU
SI

O
N

207

6. Mobile Rowhammer defenses. We presented a practical mitigation of
DMA-based Rowhammer attacks on ARM. By means of concrete examples,

we showed that existing, and proposed software mitigations do not �x the

problem of Rowhammer exploitation: they are either impractical to de-

ploy, or do not provide adequate protection. We proposed a lightweight,

software-only defense to prevent Rowhammer exploitation on mobile de-

vices. Our mitigation works by isolating DMA allocations — those that

allow e�cient Rowhammer attacks — from other memory, ensuring that

bit �ips never occur in kernel-level data structures. Our approach is unique

in that it does not try to mitigate all possible Rowhammer bugs, but rather

aims at eliminating the easiest and most pressing attack vector. This al-

lowed us to implement a solution that is fast and does not incur a large

memory overhead, making it practical for deployment in real devices.

Future Directions

As we currently experience the resurgence of memory errors — the trend of ex-

plosive growth in number of reported vulnerabilities — it is clear that we are far

from done with them. This dissertation only scratches the surface of memory

error attacks and defenses; research on this topic remains relevant until we at
least reverse the trend and see a decrease in the number of issues that are opened

every day. There are numerous directions for future research, ranging from non-
control-data attacks to low-overhead bounds checkers, from legacy systems and
patching behavior to static and dynamic analysis for vulnerability detection, and

from type-confusion bugs to (full) memory safety solutions. In the following, we

limit ourselves to the topics presented in this dissertation to expose some con-

crete future research directions.

1. Context-sensitive CFI polices. Our binary-level forward-edge CCFI pol-

icy is straightforward: we simply propagate function pointers that are

passed in call arguments. This stimulates research on more sophisticated

policies — which Patharmor can serve as a basis for. Binary-level data

�ow analysis may be able to better reconstruct where code pointers are de-

�ned and what legal paths of function calls can propagate them to indirect

callsites. This would help to signi�cantly reduce the number of allowed tar-

gets for forward edges in a program’s CFG, yielding even better security

guarantees than currently available.

Aside from strong CCFI policies on binaries, source-level protections may

also bene�t from better Data Structure Analysis (DSA). The current LLVM

i
i

i
i

i
i

i
i

208 CHAPTER 8. CONCLUSION

DSA design is �ow-insensitive and uni�cation-based and thus aggressively

merges data-�ow information, resulting in overly conservative results when

searching for forward-edge context-sensitive policies. Future work should

aim for more progressive results, while keeping analysis overhead to a min-

imum.

2. Evaluating defenses. Our gadget-discovery framework evaluates code-

reuse defenses that are only applicable to general programs. We do not

evaluate C++-speci�c approaches like vtable protection mechanisms. Fu-

ture work should extend our e�orts and incorporate such proposals, yield-

ing a better understanding of the security guarantees of language-speci�c

defenses. Similarly, it may be possible to cover an even wider area of mem-

ory error mitigations by also including data-only attacks in our framework.

Additionally, as one of our conclusions is that we must combine state-

of-the-art code-reuse defenses to provide better security guarantees, we

should evaluate (1) what the best combinations of code-reuse defenses are,

and (2) how their combination a�ects system performance.

3. Protecting the Internet of Things. The Internet of Things, or IoT, is

a collective name for embedded devices — basically every device beyond

servers, desktops, laptops, and smartphones — that communicate with one

another. Characterized by their small size, these gadgets are often low pow-

ered and consist of ‘exotic’ architectures. This makes it hard to port existing

memory error mitigations: some embedded systems do not even provide

virtual memory, rendering many x86-based defenses useless. If IoT applica-

tions continue being written in unsafe low-level languages like C and C++,

the estimated 30 billion operable devices in 2020 cause a drastic increase

in the memory-error attack surface. Research should focus on addressing

such major challenges in securing our future systems.

4. Pointer Authentication. ARM recently announced Pointer Authentica-
tion instructions, an extension to the ARMv8 Instruction Set Architecture

(ISA) that allows programs to e�ciently encrypt and decrypt pointers in

memory. A whitepaper from Qualcomm describes how a return address

gets ‘encrypted’ with a secret key and a context. By using the stack pointer

(SP) for the latter, return instructions can only return to callsites with a

matching SP.

While this extension is a step towards eliminating code-reuse attacks in

hardware, the use-case scenario as proposed in the whitepaper is still vul-

i
i

i
i

i
i

i
i

FUTURE DIRECTIONS

C
O

N
C

LU
SI

O
N

209

nerable to replay attacks: an attacker with arbitrary read capabilities can

collect valid authentication codes and use these in a later stage to launch

a ROP chain. We envision three directions to improve precision of Pointer

Authentication and thus limit the attack surface even further. First, by in-

cluding the callee’s function address in the context, we guarantee that func-

tions must always return to their original caller. Second, as this still allows

for in-function ROP chains, we suggest to use unique stack alignments for

each callsite in a function, ensuring a unique (SP + caller function) context

per callsite. Third, since only a limited number of bits are available for stack

alignment, we suggest to use the instruction pointer as a third input to the

context: by cloning large functions accross virtual memory, we increase

singularity for each callsite.

5. Large-scale Rowhammer study. Ever since its discovery, the Rowham-

mer bug has been used in a variety of attack scenarios, targeting mobile

phones, desktop platforms, and even the cloud. It remains unclear, how-

ever, how prevalent the Rowhammer-bug is in reality, and how easy it is to

trigger bit �ips in practice; as we still await the �rst use of Rowhammer in

the wild, all existing exploits never left the academic �eld. DRAM manu-

facturers tell us that Rowhammer has been resolved, and that new memory

chips should no longer be exposed, but without a widespread analysis, we

cannot know for sure.

Future work should initiate a large-scale study on Rowhammer in uncon-

trolled environments. Such research should include (1) an evaluation on

how we can reverse engineer the required (DRAM) hardware properties —

the rowsize and how adresses are mapped to channels, banks, and ranks —

in an uncontrolled environment, i.e., without permitting root access and in-

�nite trials; and (2) a detailed breakdown of vulnerable devices and/or DDR

modules. Such work would enable a�ected industrial companies to per-

form better risk management strategies, helping them to answer the ques-

tion whether Rowhammer requires more (or less) attention and whether

we should consider it to be a viable and pratical attack vector for the fu-

ture.

6. Hardware-based Rowhammer mitigations. Hardware vendors have

proposed and are deploying features that are speci�cally designed to miti-

gate Rowhammer attacks. Implementing them in hardware has the advan-

tage that performance overhead remains limited, making such designs suit-

able for daily use. Evaluating said technologies, however is of paramount;

i
i

i
i

i
i

i
i

210 CHAPTER 8. CONCLUSION

future work should focus on analyzing their security guarantees, and where

necessary try to improve them.

We envision three directions for research on (the e�ectiveness of) hardware-

based Rowhammer mitigations. A �rst direction involves designing a se-

cure error-correcting code (ECC) memory version that protects against

Rowhammer — akin to a recently proposed software-based mitigation tech-

nique [79]. ECC was originally introduced to protect server systems from

bit �ips induced by cosmic rays, but is now often suggested as a sound de-

fense against Rowhammer bit �ips as well. Recent work, however, shows

that an attacker can bypass ECC protection by �ipping multiple bits in

a 64-bit word, rendering the error-correcting code valid again [32]. A sec-

ond direction comprehends the evaluation of the Target Row Refresh (TRR)

mitigation that is available in recent DDR chips. By keeping track of row

activations, TRR detects rows that are being hammered and can refresh

them more frequently. Deciding on the threshold, however, is hard: set-

ting it too low will cause an unnecessary increase in power consumption

and decrease in performance, while setting it too high may result in not

refreshing an attacked row in time. A third direction involves exploring

how an additional cache in the memory controller could thwart Rowham-

mer attacks. Chip makers may decide to add DRAM caches that are physi-

cally just before physical memory, aiming at improving DMA performance.

Such caches have a side-e�ect for Rowhammer as well since reads from the

aggressor rows no longer propagate to DRAM directly. Future Rowhammer

attacks may need to reverse engineer such cache’s eviction policy to �nd

if eviction-based Rowhammer remains a threat.

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

References

The references in this thesis are organized in di�erent sections: conference pro-

ceedings, (journal) articles, books, technical reports and documentation, online

articles, talks, and source code. All online references were archived and are avail-

able in the Internet Archive Wayback Machine.1 They were all accessed on June

1, 2018, unless stated otherwise.

Conference Proceedings

[1] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. A theory of secure control-�ow. In

Proceedings of the 7th International Conference on Formal Engineering Methods (ICFEM).
Nov. 2005.

[2] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-�ow integrity. In Proceed-
ings of the 12th ACM Conference on Computer and Communications Security (CCS). Nov.

2005.

[3] M. T. Aga, Z. B. Aweke, and T. Austin. When good protections go bad: Exploiting
anti-DoS measures to accelerate rowhammer attacks. In Proceedings of the 10th

IEEE International Symposium on Hardware Oriented Security and Trust (HOST). May

2017.

[4] B. Aichinger. DDR memory errors caused by row hammer. In Proceedings of the
19th IEEE High Performance Extreme Computing Conference (HPEC). Sep. 2015.

[5] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro. Preventing memory error
exploits withWIT. In Proceedings of the 29th IEEE Symposium on Security and Privacy
(S&P). May 2008.

[6] P. Akritidis, M. Costa, M. Castro, and S. Hand. Baggy bounds checking: An e�cient
and backwards-compatible defense against out-of-bounds errors. In Proceed-
ings of the 18th USENIX Security Symposium (USENIX SEC). Aug. 2009.

[7] D. Andriesse, X. Chen, V. van der Veen, A. Słowińska, and H. Bos. An in-depth
analysis of disassembly on full-scale x86/x64 binaries. In Proceedings of the 25th

USENIX Security Symposium (USENIX SEC). Aug. 2016.

[8] Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. Oren, and T. Austin. ANVIL:
Software-based protection against next-generation rowhammer attacks. In Pro-

1
https://web.archive.org

213

https://web.archive.org

i
i

i
i

i
i

i
i

214 REFERENCES

ceedings of the 21st ACM Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS). Apr. 2016.

[9] M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nürnberger, and J. Pewny. You can
run but you can’t read: Preventing disclosure exploits in executable code. In

Proceedings of the 21st ACM Conference on Computer and Communications Security
(CCS). Nov. 2014.

[10] M. Backes and S. Nürnberger. Oxymoron: Making �ne-grainedmemory random-
ization practical by allowing code sharing. In Proceedings of the 23rd USENIX
Security Symposium (USENIX SEC). Aug. 2014.

[11] A. R. Bernat and B. P. Miller. Anywhere, any-time binary instrumentation. In

Proceedings of the 10th Workshop on ProgramAnalysis for Software Tools and Engineering
(PASTE). Sep. 2011.

[12] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address obfuscation: An e�cient ap-
proach to combat a broad range of memory error exploits. In Proceedings of the
12th USENIX Security Symposium (USENIX SEC). Aug. 2003.

[13] S. Bhatkar, R. Sekar, and D. C. DuVarney. E�cient techniques for comprehensive
protection frommemory error exploits. In Proceedings of the 14th USENIX Security
Symposium (USENIX SEC). Jul. 2005.

[14] D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and H. Okhravi. Timely rerandomiza-
tion formitigatingmemory disclosures. In Proceedings of the 22nd ACMConference
on Computer and Communications Security (CCS). Oct. 2015.

[15] A. Bittau, A. Belay, A. J. Mashtizadeh, D. Mazières, and D. Boneh. Hacking blind. In

Proceedings of the 35th IEEE Symposium on Security and Privacy (S&P). May 2014.

[16] T. Bletsch, X. Jiang, and V. W. Freeh. Mitigating code-reuse attacks with control-
�ow locking. In Proceedings of the 27th Annual Computer Security Applications Con-
ference (ACSAC). Dec. 2011.

[17] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-oriented programming: A new
class of code-reuse attack. In Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security (ASIACCS). Mar. 2011.

[18] E. Bosman and H. Bos. Framing signals—a return to portable shellcode. In Pro-
ceedings of the 35th IEEE Symposium on Security and Privacy (S&P). May 2014.

[19] E. Bosman, K. Razavi, H. Bos, and C. Giu�rida. Dedup est machina: Memory dedu-
plication as an advanced exploitation vector. In Proceedings of the 37th IEEE Sym-
posium on Security and Privacy (S&P). May 2015.

[20] D. Bounov, R. G. Kıcı, and S. Lerner. Protecting C++ dynamic dispatch through
VTable interleaving. In Proceedings of the 23rd Annual Network and Distributed
System Security Symposium (NDSS). Feb. 2016.

[21] K. Braden, S. Crane, L. Davi, M. Franz, P. Larsen, C. Liebchen, and A. Sadeghi. Leakage-
resilient layout randomization for mobile devices. In Proceedings of the 23rd

Annual Network and Distributed System Security Symposium (NDSS). Feb. 2016.

[22] F. Brasser, L. Davi, D. Gens, C. Liebchen, and A. Sadeghi.CAn’t TouchThis: Practical
and generic software-only defenses against rowhammer attacks. In Proceedings
of the 26th USENIX Security Symposium (USENIX SEC). Aug. 2016.

[23] N. Burow, D. McKee, S. A. Carr, and M. Payer. CFIXX: Object type integrity for C++

virtual dispatch. In Proceedings of the 24th Annual Network and Distributed System
Security Symposium (NDSS). Feb. 2018.

i
i

i
i

i
i

i
i

REFERENCES 215

[24] Y. Cai, S. Ghose, Y. Luo, K. Mai, O. Mutlu, and E. F. Haratsch. Vulnerabilities in MLC
NAND�ashmemory programming: Experimental analysis, exploits, andmit-
igation techniques. In Proceedings of the 23rd International on High-Performance
Computer Architecture (HPCA). Feb. 2017.

[25] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross. Control-�ow bending:
On the e�ectiveness of control-�ow integrity. In Proceedings of the 24th USENIX
Security Symposium (USENIX SEC). Aug. 2015.

[26] N. Carlini and D. Wagner. ROP is still dangerous: Breaking modern defenses. In

Proceedings of the 23rd USENIX Security Symposium (USENIX SEC). Aug. 2014.

[27] S. Checkoway, L. Davi, A. Dmitrienko, A. Sadeghi, H. Shacham, and M. Winandy.

Return-oriented programming without returns. In Proceedings of the 17th ACM
Conference on Computer and Communications Security (CCS). Oct. 2010.

[28] X. Chen, H. Bos, and C. Giu�rida. CodeArmor: Virtualizing the code space to
counter disclosure attacks. In Proceedings of the 2nd IEEE European Symposium on
Security and Privacy (EuroS&P). Apr. 2017.

[29] X. Chen, A. Słowińska, D. Andriesse, H. Bos, and C. Giu�rida. StackArmor: Com-
prehensive protection from stack-based memory error vulnerabilities for bi-
naries. In Proceedings of the 22nd Annual Network and Distributed System Security
Symposium (NDSS). Feb. 2015.

[30] Y. Cheng, Z. Zhou, M. Yu, X. Ding, and R. H. Deng. ROPecker: A generic and
practical approach for defending against ROP attacks. In Proceedings of the 21st

Annual Network and Distributed System Security Symposium (NDSS). Feb. 2014.

[31] T. Chiueh and F. Hsu. RAD: A compile-time solution to bu�er over�ow attacks.
In Proceedings of the 21st International Conference on Distributed Computing Systems
(ICDCS). Apr. 2001.

[32] L. Cojocar, K. Razavi, C. Giu�rida, and H. Bos. Exploiting correcting codes: On the
e�ectiveness of ecc memory against rowhammer attacks. In Proceedings of the
40th IEEE Symposium on Security and Privacy (S&P). May 2019.

[33] A. Coletta, V. van der Veen, and F. Maggi. DroydSeuss: A mobile banking trojan
tracker - short paper. In Proceedings of the 20th International Conference on Financial
Cryptography and Data Security (FC). Feb. 2016.

[34] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, M. Negro, C. Liebchen, M. Qunaibit,

and A. Sadeghi. Losing control: On the e�ectiveness of control-�ow integrity
under stack attacks. In Proceedings of the 22nd ACM Conference on Computer and
Communications Security (CCS). Oct. 2015.

[35] M. L. Corliss, E. C. Lewis, and A. Roth. Using DISE to protect return addresses
from attack. In Proceedings of the Workshop on architectural support for security and
anti-virus (WASSA). Mar. 2005.

[36] C. Cowan, C. Pu, D. Maier, H. Hintongif, J. Walpole, P. Bakke, S. Beattie, A. Grier, P.

Wagle, and Q. Zhang. StackGuard: Automatic adaptive detection and prevention
of bu�er-over�ow attacks. In Proceedings of the 7th USENIX Security Symposium
(USENIX SEC). Jan. 1998.

[37] S. Crane, A. Homescu, and P. Larsen. Code randomization: Haven’t we solved this
problem yet? In Proceedings of the 2016 IEEE Cybersecurity Development Conference
(SecDev). Nov. 2016.

i
i

i
i

i
i

i
i

216 REFERENCES

[38] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A. Sadeghi, S. Brunthaler,

and M. Franz. Readactor: Practical code randomization resilient to memory
disclosure. In Proceedings of the 36th IEEE Symposium on Security and Privacy (S&P).
May 2015.

[39] S. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen, L. Davi, A. Sadeghi, T.

Holz, B. D. Sutter, and M. Franz. It’s a TRaP: Table randomization and protec-
tion against function-reuse attacks. In Proceedings of the 22nd ACM Conference on
Computer and Communications Security (CCS). Oct. 2015.

[40] J. Criswell, N. Dautenhahn, and V. Adve. KCoFI: Complete control-�ow integrity
for commodity operating system kernels. In Proceedings of the 35th IEEE Sympo-
sium on Security and Privacy (S&P). May 2014.

[41] T. H. Dang, P. Maniatis, and D. Wagner. The performance cost of shadow stacks
and stack canaries. In Proceedings of the 10th ACM Symposium on Information, Com-
puter and Communications Security (ASIACCS). Apr. 2015.

[42] L. Davi, C. Liebchen, A. Sadeghi, K. Z. Snow, and F. Monrose. Isomeron: Code ran-
domization resilient to (just-in-time) return-oriented programming. In Pro-
ceedings of the 22nd Annual Network and Distributed System Security Symposium (NDSS).
Feb. 2015.

[43] L. Davi, A. Sadeghi, D. Lehmann, and F. Monrose. Stitching the gadgets: On the inef-
fectiveness of coarse-grained control-�ow integrity protection. In Proceedings
of the 23rd USENIX Security Symposium (USENIX SEC). Aug. 2014.

[44] L. Davi, A. Sadeghi, and M. Winandy. Dynamic integrity measurement and at-
testation: Towards defense against return-oriented programming attacks. In

Proceedings of the 4th ACM Workshop on Scalable Trusted Computing (STC). Nov. 2009.

[45] M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda. Defending browsers against drive-
by downloads: Mitigating heap-spraying code injection attacks. In Proceedings
of the 6th Conference on Detection of Intrusions and Malware & Vulnerability Assessment
(DIMVA). Jul. 2009.

[46] M. Elsabagh, D. Fleck, and A. Stavrou. Strict virtual call integrity checking for C++

binaries. In Proceedings of the 12th ACM Symposium on Information, Computer and
Communications Security (ASIACCS). Apr. 2017.

[47] Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula. XFI: Software guards
for system address spaces. In Proceedings of the 7th USENIX Symposium on Operating
Systems Design and Implementation (OSDI). Nov. 2006.

[48] I. Evans, S. Fingeret, J. González, U. Otgonbaatar, T. Tang, H. Shrobe, S. Sidiroglou-

Douskos, M. C. Rinard, and H. Okhravi. Missing the point(er): On the e�ectiveness
of code pointer integrity. In Proceedings of the 36th IEEE Symposium on Security and
Privacy (S&P). May 2015.

[49] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. C. Rinard, H. Okhravi, and S. Sidiroglou-

Douskos. Control jujutsu: On the weaknesses of �ne-grained control �ow in-
tegrity. In Proceedings of the 22nd ACM Conference on Computer and Communications
Security (CCS). Oct. 2015.

[50] P. Frigo, C. Giu�rida, H. Bos, and K. Razavi. Grand pwning unit: Accelerating mi-
croarchitectural attacks with the gpu. In Proceedings of the 39th IEEE Symposium
on Security and Privacy (S&P). May 2018.

i
i

i
i

i
i

i
i

REFERENCES 217

[51] R. Gawlik and T. Holz. Towards automated integrity protection of C++ virtual
function tables in binary programs. In Proceedings of the 30th Annual Computer
Security Applications Conference (ACSAC). Dec. 2014.

[52] X. Ge, W. Cui, and T. Jaeger. GRIFFIN: Guarding control �ows using intel pro-
cessor trace. In Proceedings of the 22nd ACM Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). Apr. 2017.

[53] X. Ge, M. Payer, and T. Jaeger. An evil copy: How the loader betrays you. In

Proceedings of the 24th Annual Network and Distributed System Security Symposium
(NDSS). Feb. 2017.

[54] J. Gionta, W. Enck, and P. Larsen. Preventing kernel code-reuse attacks through
disclosure resistant code diversi�cation. In Proceedings of the 2016 IEEE Conference
on Communications and Network Security (CNS). Oct. 2016.

[55] J. Gionta, W. Enck, and P. Ning. HideM: Protecting the contents of userspace
memory in the face of disclosure vulnerabilities. In Proceedings of the 5th ACM
Conference on Data and Application Security and Privacy (CODASPY). Mar. 2015.

[56] C. Giu�rida, A. Kuijsten, and A. S. Tanenbaum. Enhanced operating system se-
curity through e�cient and �ne-grained address space randomization. In Pro-
ceedings of the 21st USENIX Security Symposium (USENIX SEC). Aug. 2012.

[57] E. Göktaş, E. Athanasopoulos, H. Bos, and G. Portokalidis. Out of control: Overcom-
ing control-�ow integrity. In Proceedings of the 35th IEEE Symposium on Security
and Privacy (S&P). May 2014.

[58] E. Göktaş, E. Athanasopoulos, M. Polychronakis, H. Bos, and G. Portokalidis. Size
does matter: Why using gadget-chain length to prevent code-reuse attacks is
hard. In Proceedings of the 23rd USENIX Security Symposium (USENIX SEC). Aug. 2014.

[59] D. Gruss, C. Maurice, Stefan, and Mangard. Rowhammer.js: A remote software-
induced fault attack in javascript. In Proceedings of the 13th Conference on Detection
of Intrusions and Malware & Vulnerability Assessment (DIMVA). Jul. 2016.

[60] Y. Gu, Q. Zhao, Y. Zhang, and Z. Lin. PT-CFI: Transparent backward-edge control
�ow violation detection using intel processor trace. In Proceedings of the 7th

ACM Conference on Data and Application Security and Privacy (CODASPY). Mar. 2017.

[61] I. Haller, E. Göktaş, E. Athanasopoulos, G. Portokalidis, and H. Bos. ShrinkWrap:
VTable protection without loose ends. In Proceedings of the 31st Annual Computer
Security Applications Conference (ACSAC). Dec. 2015.

[62] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson. ILR: Where’d my
gadgets go? In Proceedings of the 33rd IEEE Symposium on Security and Privacy (S&P).
May 2012.

[63] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and M. Franz. Pro�le-guided auto-
mated software diversity. In Proceedings of the 11nd IEEE/ACM International Sym-
posium on Code Generation and Optimization (CGO). Feb. 2013.

[64] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang. Automatic generation of data-
oriented exploits. In Proceedings of the 24th USENIX Security Symposium (USENIX
SEC). Aug. 2015.

[65] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang. Data-oriented pro-
gramming: On the expressiveness of non-control data attacks. In Proceedings of
the 37th IEEE Symposium on Security and Privacy (S&P). May 2015.

i
i

i
i

i
i

i
i

218 REFERENCES

[66] D. Jang, Z. Tatlock, and S. Lerner. SAFEDISPATCH: Securing C++ virtual calls
from memory corruption attacks. In Proceedings of the 21st Annual Network and
Distributed System Security Symposium (NDSS). Feb. 2014.

[67] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang. Cyclone: A safe
dialect of c. In Proceedings of the 2002 USENIX Annual Technical Conference (USENIX
ATC). Jun. 2002.

[68] W. Jin, C. Cohen, J. Gennari, C. Hines, S. Chaki, A. Gur�nkel, J. Havrilla, and P.

Narasimhan. Recovering C++ objects from binaries using inter-procedural data-
�ow analysis. In Proceedings of the 3rd ACM SIGPLAN Program Protection and Reverse
Engineering Workshop (PPREW). Jan. 2014.

[69] R. W. M. Jones and P. H. J. Kelly. Backwards-compatible bounds checking for
arrays and pointers in c programs. In Proceedings of the 3rd International Workshop
on Automated Debugging (AADEBUG). May 1997.

[70] O. Katz, N. Rinetzky, and E. Yahav. Statistical reconstruction of class hierarchies
in binaries. In Proceedings of the 23rd ACM Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). Mar. 2018.

[71] O. Katz, R. El-Yaniv, and E. Yahav. Estimating types in binaries using predictive
modeling. In Proceedings of the 43rd ACM Symposium on Principles of Programming
Languages (POPL). Jan. 2016.

[72] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering code-injection attacks
with instruction-set randomization. In Proceedings of the 10th ACM Conference on
Computer and Communications Security (CCS). Oct. 2003.

[73] V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis. ret2dir: Rethinking kernel
isolation. In Proceedings of the 23rd USENIX Security Symposium (USENIX SEC). Aug.

2014.

[74] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis. libdft: Practical dy-
namic data �ow tracking for commodity systems. In Proceedings of the 8th ACM
Conference on Virtual Execution Environments (VEE). Mar. 2012.

[75] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning. Address space layout permutation
(ASLP): Towards �ne-grained randomization of commodity software. In Pro-
ceedings of the 22nd Annual Computer Security Applications Conference (ACSAC). Dec.

2006.

[76] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and O. Mutlu.

Flipping bits in memory without accessing them: An experimental study of
DRAM disturbance errors. In Proceedings of the 41st International Symposium on
Computer Architecture (ISCA). Jun. 2014.

[77] V. Kiriansky, D. L. Bruening, and S. Amarasinghe. Secure execution via program
shepherding. In Proceedings of the 11th USENIX Security Symposium (USENIX SEC).
Aug. 2002.

[78] K. Koning, H. Bos, and C. Giu�rida. Secure and e�cient multi-variant execution
using hardware-assisted process virtualization. In Proceedings of the 46th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). Jul. 2016.

[79] R. K. Konoth, M. Oliverio, A. Tatar, D. Andriesse, H. Bos, C. Giu�rida, and K. Razavi. Ze-
bram: Comprehensive and compatible software protection against rowham-
mer attacks. In Proceedings of the 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI). Nov. 2018.

i
i

i
i

i
i

i
i

REFERENCES 219

[80] R. K. Konoth, V. van der Veen, and H. Bos. How anywhere computing just killed
your phone-based two-factor authentication. In Proceedings of the 20th Interna-
tional Conference on Financial Cryptography and Data Security (FC). Feb. 2016.

[81] H. Koo and M. Polychronakis. Juggling the gadgets: Binary-level code randomiza-
tion using instruction displacement. In Proceedings of the 11nd ACM Symposium
on Information, Computer and Communications Security (ASIACCS). May 2016.

[82] S. Krishnamoorthy, M. S. Hsiao, and L. Lingappan. Tackling the path explosion
problem in symbolic execution-driven test generation for programs. In Pro-
ceedings of the 19th IEEE Asian Test Symposium (ATS). Dec. 2010.

[83] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song. Code-pointer
integrity. In Proceedings of the 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI). Oct. 2014.

[84] C. Lattner, A. Lenharth, and V. Adve. Making context-sensitive points-to analysis
with heap cloning practical for the real world. In Proceedings of the 28th ACM
SIGPLAN conference on Programming Language Design and Implementation (PLDI). Jun.

2007.

[85] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio, V. van der Veen,

and C. Platzer. ANDRUBIS - 1,000,000 apps later: A view on current Android
malware behaviors. In Proceedings of the 3rd International Workshop on Building
Analysis Datasets and Gathering Experience Returns for Security (BADGERS). Sep. 2014.

[86] M. Lipp, D. Gruss, R. Spreitzer, and S. Mangard. ARMageddon: Cache attacks on
mobile devices. In Proceedings of the 25th USENIX Security Symposium (USENIX SEC).
Aug. 2016.

[87] S. Liu, K. Pattabiraman, T. Moscibroda, and B. Zorn. Flikker: Saving DRAM refresh-
power through critical data partitioning. In Proceedings of the 16th ACM Con-
ference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS). Mar. 2011.

[88] Y. Liu, P. Shi, X. Wang, H. Chen, B. Zang, and H. Guan.Transparent and e�cient CFI
enforcement with Intel Processor Trace. In Proceedings of the 23rd International
Symposium on High Performance Computer Architecture (HPCA). Feb. 2017.

[89] K. Lu, S. Nürnberger, M. Backes, and W. Lee. How to make ASLR win the clone
wars: Runtime re-randomization. In Proceedings of the 23rd Annual Network and
Distributed System Security Symposium (NDSS). Feb. 2016.

[90] K. Lu, C. Song, B. Lee, S. P. Chung, T. Kim, and W. Lee. ASLR-Guard: Stopping
address space leakage for code reuse attacks. In Proceedings of the 22nd ACM
Conference on Computer and Communications Security (CCS). Oct. 2015.

[91] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi,

and K. Hazelwood. Pin: Building customized program analysis tools with dy-
namic instrumentation. In Proceedings of the 26th ACM SIGPLAN conference on
Programming Language Design and Implementation (PLDI). Jun. 2005.

[92] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières. CCFI: Cryptographically
enforced control �ow integrity. In Proceedings of the 22nd ACM Conference on
Computer and Communications Security (CCS). Oct. 2015.

[93] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic. SoftBound: Highly com-
patible and complete spatial memory safety for c. In Proceedings of the 30th ACM

i
i

i
i

i
i

i
i

220 REFERENCES

SIGPLAN conference on Programming Language Design and Implementation (PLDI). Jun.

2009.

[94] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic. CETS: Compiler-enforced
temporal safety for c. In Proceedings of the 9th International Symposium on Memory
Management (ISMM). Jun. 2010.

[95] S. Neuner, V. van der Veen, M. Lindorfer, M. Huber, G. Merzdovnik, M. Schmiedecker,

and E. Weippl. Enter sandbox: Android sandbox comparison. In Proceedings of
the 3rd IEEE Mobile Security Technologies Workshop (MoST). May 2014.

[96] B. Niu and G. Tan. Monitor integrity protection with space e�ciency and sep-
arate compilation. In Proceedings of the 20th ACM Conference on Computer and
Communications Security (CCS). Nov. 2013.

[97] B. Niu and G. Tan. Modular control-�ow integrity. In Proceedings of the 35th ACM
SIGPLAN conference on Programming Language Design and Implementation (PLDI). Jun.

2014.

[98] B. Niu and G. Tan. RockJIT: Securing just-in-time compilation using modular
control-�ow integrity. In Proceedings of the 21st ACM Conference on Computer and
Communications Security (CCS). Nov. 2014.

[99] B. Niu and G. Tan. Per-input control-�ow integrity. In Proceedings of the 22nd ACM
Conference on Computer and Communications Security (CCS). Oct. 2015.

[100] A. Oikonomopoulos, E. Athanasopoulos, H. Bos, and C. Giu�rida. Poking holes in
information hiding. In Proceedings of the 25th USENIX Security Symposium (USENIX
SEC). Aug. 2016.

[101] V. Pappas, M. Polychronakis, and A. D. Keromytis. Smashing the gadgets: Hin-
dering return-oriented programming using in-place code randomization. In

Proceedings of the 33rd IEEE Symposium on Security and Privacy (S&P). May 2012.

[102] V. Pappas, M. Polychronakis, and A. D. Keromytis. Transparent ROP exploit miti-
gation using indirect branch tracing. In Proceedings of the 22nd USENIX Security
Symposium (USENIX SEC). Aug. 2013.

[103] A. Pawlowski, M. Contag, V. van der Veen, C. Ouwehand, T. Holz, H. Bos, E. Athana-

sopoulos, and C. Giu�rida. MARX: Uncovering class hierarchies in C++ programs.
In Proceedings of the 24th Annual Network and Distributed System Security Symposium
(NDSS). Feb. 2017.

[104] A. Pawlowski, V. van der Veen, D. Andriesse, E. van der Kouwe, T. Holz, and C.

Giu�rida. VPS: Excavating high-level C++ constructs from low-level binaries to
protect dynamic dispatching. In Proceedings of the 35th Annual Computer Security
Applications Conference (ACSAC). Dec. 2019.

[105] M. Payer, A. Barresi, and T. R. Gross. Fine-grained control-�ow integrity through
binary hardening. In Proceedings of the 12th Conference on Detection of Intrusions
and Malware & Vulnerability Assessment (DIMVA). Jul. 2015.

[106] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard. DRAMA: Exploiting
DRAM addressing for cross-CPU attacks. In Proceedings of the 25th USENIX Secu-
rity Symposium (USENIX SEC). Aug. 2016.

[107] P. Philippaerts, Y. Younan, S. Muylle, F. Piessens, S. Lachmund, and T. Walter. Code
pointer masking: Hardening applications against code injection attacks. In

Proceedings of the 8th Conference on Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA). Jul. 2011.

i
i

i
i

i
i

i
i

REFERENCES 221

[108] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos.Comprehensive shellcode
detection using runtime heuristics. In Proceedings of the 26th Annual Computer
Security Applications Conference (ACSAC). Dec. 2010.

[109] M. Pomonis, T. Petsios, A. D. Keromytis, M. Polychronakis, and V. P. Kemerlis. kRˆX:
Comprehensive kernel protection against just-in-time code reuse. In Proceed-
ings of the 12th ACM European Conference on Computer Systems (EuroSys). Apr. 2017.

[110] A. Prakash, X. Hu, and H. Yin. vfGuard: Strict protection for virtual function calls
in COTS C++ binaries. In Proceedings of the 22nd Annual Network and Distributed
System Security Symposium (NDSS). Feb. 2015.

[111] M. Prasad and T. Chiueh. A binary rewriting defense against stack based bu�er
over�ow attacks. In Proceedings of the 2003 USENIX Annual Technical Conference
(USENIX ATC). Jun. 2003.

[112] R. Qiao and M. Seaborn. Anew approach for rowhammer attacks. In Proceedings of
the 9th IEEE International Symposium on Hardware Oriented Security and Trust (HOST).
May 2016.

[113] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giu�rida, and H. Bos. VUzzer: Application-
aware evolutionary fuzzing. In Proceedings of the 24th Annual Network and Dis-
tributed System Security Symposium (NDSS). Feb. 2017.

[114] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giu�rida, and H. Bos. Flip Feng Shui:
Hammering a needle in the software stack. In Proceedings of the 25th USENIX
Security Symposium (USENIX SEC). Aug. 2016.

[115] B. G. Roth and E. H. Spa�ord. Implicit bu�er over�ow protection using mem-
ory segregation. In Proceedings of the 6th International Conference on Availability,
Reliability and Security (ARES). Aug. 2011.

[116] R. Rudd, R. Skowyra, D. Bigelow, V. Dedhia, T. Hobson, S. Crane, C. Liebchen, P. Larsen,

L. Davi, M. Franz, A. Sadeghi, and H. Okhravi. Address oblivious code reuse: On
the e�ectiveness of leakage resilient diversity. In Proceedings of the 24th Annual
Network and Distributed System Security Symposium (NDSS). Feb. 2017.

[117] O. Ruwase and M. S. Lam. A practical dynamic bu�er over�ow detector. In Pro-
ceedings of the 11th Annual Network and Distributed System Security Symposium (NDSS).
Feb. 2004.

[118] P. Sarbinowski, V. P. Kemerlis, C. Giu�rida, and E. Athanasopoulos. Vtpin: Practi-
cal vtable hijacking protection for binaries. In Proceedings of the 32nd Annual
Computer Security Applications Conference (ACSAC). Dec. 2016.

[119] A. Schaller, W. Xiong, M. U. Salee, N. A. Anagnostopoulos, S. Katzenbeisser, and J. Szefer.

Intrinsic rowhammer PUFs: Leveraging the rowhammer e�ect for improved
security. In Proceedings of the 10th IEEE International Symposium onHardware Oriented
Security and Trust (HOST). May 2017.

[120] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A. Sadeghi, and T. Holz. Counterfeit
object-oriented programming: On the di�culty of preventing code reuse at-
tacks in C++ applications. In Proceedings of the 36th IEEE Symposium on Security
and Privacy (S&P). May 2015.

[121] F. Schuster, T. Tendyck, J. Pewny, A. Maaß, M. Steegmanns, M. Contag, and T. Holz.

Evaluating the e�ectiveness of current anti-ROP defenses. In Proceedings of the
17th International Symposium on Research in Attacks, Intrusions and Defenses (RAID).
Sep. 2014.

i
i

i
i

i
i

i
i

222 REFERENCES

[122] E. J. Schwartz, T. Avgerinos, and D. Brumley. Q: Exploit hardening made easy. In

Proceedings of the 20th USENIX Security Symposium (USENIX SEC). Aug. 2011.

[123] J. Seibert, H. Okhravi, and E. Söderström. Information leaks without memory
disclosures: Remote side channel attacks on diversi�ed code. In Proceedings of
the 21st ACM Conference on Computer and Communications Security (CCS). Nov. 2014.

[124] H. Shacham. The geometry of innocent �esh on the bone: Return-into-libc
without function calls (on the x86). In Proceedings of the 14th ACM Conference on
Computer and Communications Security (CCS). Nov. 2007.

[125] A. Słowińska, T. Stancescu, and H. Bos. Howard: A dynamic excavator for reverse
engineering data structures. In Proceedings of the 18th Annual Network and Dis-
tributed System Security Symposium (NDSS). Feb. 2011.

[126] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A. Sadeghi. Just-
In-Time code reuse: On the e�ectiveness of �ne-grained address space layout
randomization. In Proceedings of the 34th IEEE Symposium on Security and Privacy
(S&P). May 2013.

[127] M. L. So�a, K. R. Walcott, and J. Mars. Exploiting hardware advances for soft-
ware testing and debugging (NIER track). In Proceedings of the 33rd International
Conference on Software Engineering (ICSE). May 2011.

[128] M. Sun, J. C. S. Lui, and Y. Zhou. Blender: Self-randomizing address space layout
for android apps. In Proceedings of the 19th International Symposium on Research in
Attacks, Intrusions and Defenses (RAID). Sep. 2016.

[129] A. Tang, S. Sethumadhavan, and S. Stolfo. Heisenbyte: Thwarting memory dis-
closure attacks using destructive code reads. In Proceedings of the 22nd ACM
Conference on Computer and Communications Security (CCS). Oct. 2015.

[130] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson, L. Lozano, and

G. Pike. Enforcing forward-edge control-�ow integrity in GCC & LLVM. In

Proceedings of the 23rd USENIX Security Symposium (USENIX SEC). Aug. 2014.

[131] V. van der Veen, D. Andriesse, E. Göktaş, B. Gras, L. Sambuc, A. Słowińska, H. Bos,

and C. Giu�rida. Practical context-sensitive CFI. In Proceedings of the 22nd ACM
Conference on Computer and Communications Security (CCS). Oct. 2015.

[132] V. van der Veen, D. Andriesse, M. Stamatogiannakis, X. Chen, H. Bos, and C. Giu�rida.

The dynamics of innocent �esh on the bone: Code reuse ten years later. In

Proceedings of the 24th ACM Conference on Computer and Communications Security
(CCS). Oct. 2017.

[133] V. van der Veen, N. dutt-Sharma, L. Cavallaro, and H. Bos. Memory errors: The past,
the present, and the future. In Proceedings of the 15th International Symposium on
Research in Attacks, Intrusions, and Defenses (RAID). Sep. 2012.

[134] V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice, G. Vigna, H.

Bos, K. Razavi, and C. Giu�rida. Drammer: Deterministic rowhammer attacks
on mobile platforms. In Proceedings of the 23rd ACM Conference on Computer and
Communications Security (CCS). Oct. 2016.

[135] V. van der Veen, E. Göktaş, M. Contag, A. Pawlowski, X. Chen, S. Rawat, H. Bos,

T. Holz, E. Athanasopoulos, and C. Giu�rida. A tough call: Mitigating advanced
code-reuse attacks at the binary level. In Proceedings of the 37th IEEE Symposium
on Security and Privacy (S&P). May 2015.

i
i

i
i

i
i

i
i

REFERENCES 223

[136] V. van der Veen, M. Lindorfer, Y. Fratantonio, H. P. Pillai, G. Vigna, C. Kruegel, H.

Bos, and K. Razavi. GuardION: Practical mitigation of DMA-based rowhammer
attacks on ARM. In Proceedings of the 15th Conference on Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA). Jun. 2018.

[137] R. K. Venkatesan, S. Herr, and E. Rotenberg. Retention-aware placement in DRAM
(RAPID): Software methods for quasi-non-volatile DRAM. In Proceedings of the
13th International Symposium on High Performance Computer Architecture (HPCA). Feb.

2006.

[138] D. Wagner and D. Dean. Intrusion detection via static analysis. In Proceedings of
the 22nd IEEE Symposium on Security and Privacy (S&P). May 2001.

[139] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. E�cient software-based fault
isolation. In Proceedings of the 14th ACM Symposium on Operating Systems Principles.
Dec. 1993.

[140] Z. Wang, C. Wu, J. Li, Y. Lai, X. Zhang, W. Hsu, and Y. Cheng. ReRanz: A light-
weight virtual machine to mitigate memory disclosure attacks. In Proceedings
of the 13th ACM Conference on Virtual Execution Environments (VEE). Apr. 2017.

[141] Z. Wang and X. Jiang. HyperSafe: A lightweight approach to provide lifetime
hypervisor control-�ow integrity. In Proceedings of the 31st IEEE Symposium on
Security and Privacy (S&P). May 2010.

[142] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary stirring: Self-randomizing
instruction addresses of legacy x86 binary code. In Proceedings of the 19th ACM
Conference on Computer and Communications Security (CCS). Oct. 2012.

[143] J. Werner, G. Baltas, R. Dallara, N. Otterness, K. Z. Snow, F. Monrose, and M. Poly-

chronakis. No-execute-after-read: Preventing code disclosure in commodity
software. In Proceedings of the 11nd ACM Symposium on Information, Computer and
Communications Security (ASIACCS). May 2016.

[144] D. Williams-King, G. Gobieski, K. Williams-King, J. P. Blake, X. Yuan, P. Colp, M. Zheng,

V. P. Kemerlis, J. Yang, and W. Aiello. Shu�ler: Fast and deployable continuous
code re-randomization. In Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI). Nov. 2016.

[145] Y. Xia, Y. Liu, H. Chen, and B. Zang. CFIMon: Detecting violation of control �ow
integrity using performance counters. In Proceedings of the 42nd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN). Jun. 2012.

[146] Y. Xiao, X. Zhang, Y. Zhang, and M.-R. Teodorescu. One bit �ips, one cloud �ops:
Cross-VM row hammer attacks and privilege escalation. In Proceedings of the
25th USENIX Security Symposium (USENIX SEC). Aug. 2016.

[147] W. Xu and Y. Fu. Own your android! Yet another universal root. In Proceedings of
the 9th USENIX Workshop on O�ensive Technologies (WOOT). Aug. 2015.

[148] W. Xu, J. Li, J. Shu, W. Yang, T. Xie, Y. Zhang, and D. Gu. From collision to exploita-
tion: Unleashing use-after-free vulnerabilities in linux kernel. In Proceedings
of the 22nd ACM Conference on Computer and Communications Security (CCS). Oct.

2015.

[149] Y. Younan, P. Philippaerts, L. Cavallaro, R. Sekar, F. Piessens, and W. Joosen.PAriCheck:
an e�cient pointer arithmetic checker for c programs. In Proceedings of the 5th

ACM Symposium on Information, Computer and Communications Security (ASIACCS).
Apr. 2010.

i
i

i
i

i
i

i
i

224 REFERENCES

[150] Y. Younan, D. Pozza, F. Piessens, and W. Joosen. Extended protection against stack
smashing attacks without performance loss. In Proceedings of the 22nd Annual
Computer Security Applications Conference (ACSAC). Dec. 2006.

[151] B. Zeng, G. Tan, and Ú. Erlingsson. Strato: A retargetable framework for low-level
inlined-reference monitors. In Proceedings of the 22nd USENIX Security Symposium
(USENIX SEC). Aug. 2013.

[152] C. Zhang, S. A. Carr, T. Li, Y. Ding, C. Song, M. Payer, and D. Song. VTrust: Regaining
trust on virtual calls. In Proceedings of the 23rd Annual Network and Distributed
System Security Symposium (NDSS). Feb. 2016.

[153] C. Zhang, C. Songz, K. Z. Chen, Z. Chen, and D. Song. VTint: Protecting virtual
function tables’ integrity. In Proceedings of the 22nd Annual Network and Distributed
System Security Symposium (NDSS). Feb. 2015.

[154] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song, and W. Zou.

Practical control �ow integrity & randomization for binary executables. In

Proceedings of the 34th IEEE Symposium on Security and Privacy (S&P). May 2013.

[155] H. Zhang, D. She, and Z. Qian. Android ION hazard: The curse of customizable
memory management system. In Proceedings of the 23rd ACM Conference on Com-
puter and Communications Security (CCS). Oct. 2016.

[156] M. Zhang, R. Qiao, N. Hasabnis, and R. Sekar. A platform for secure static binary
instrumentation. In Proceedings of the 10th ACM Conference on Virtual Execution
Environments (VEE). Mar. 2014.

[157] M. Zhang and R. Sekar. Control �ow integrity for COTS binaries. In Proceedings
of the 22nd USENIX Security Symposium (USENIX SEC). Aug. 2013.

[158] M. Zhang and R. Sekar. Control �ow and code integrity for COTS binaries: An ef-
fective defense against real-world ROP attacks. In Proceedings of the 31st Annual
Computer Security Applications Conference (ACSAC). Dec. 2015.

Articles
[159] E. G. Barrantes, D. H. Ackley, S. Forrest, and D. Stefanović. Randomized instruction

set emulation. ACM Transactions on Information and System Security (TISSEC). vol. 8.

no. 1, pp. 3–40. Feb. 2005.

[160] I. Bhati, M.-T. Chang, Z. Chishti, S. Lu, and B. Jacob. DRAM refresh mechanisms,
penalties, and trade-o�s. IEEE Transactions on Computers. vol. 65. no. 1, pp. 108–121.

Mar. 2015.

[161] F. Brasser, L. Davi, D. Gens, C. Liebchen, and A. Sadeghi. CAn’t touch this: Prac-
tical and generic software-only defenses against rowhammer attacks. arXiv
Computing Research Repository. vol. abs/1611.08396. Nov. 2016.

[162] B. Buck and J. K. Hollingsworth. An API for runtime code patching. International
Journal of High Performance Computing Applications (IJHPCA). vol. 14. no. 4, pp. 317–

329. Nov. 2000.

[163] Y. Cheng, Z. Zhang, and S. Nepal. Still hammerable and exploitable: On the e�ec-
tiveness of software-only physical kernel isolation. arXiv Computing Research
Repository. vol. abs/1802.07060. Feb. 2018.

i
i

i
i

i
i

i
i

REFERENCES 225

[164] M. Conti, S. Crane, T. Frassetto, A. Homescu, G. Koppen, P. Larsen, C. Liebchen, M.

Perry, and A. Sadeghi. Selfrando: Securing the Tor browser against de-anonymi-
zation exploits. Proceedings on Privacy Enhancing Technologies (PoPETs). vol. 2016.

no. 4, pp. 454–469. Jul. 2016.

[165] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. E�ciently
computing static single assignment form and the control dependence graph.

ACM Transactions on Programming Languages and Systems (TOPLAS). vol. 13. no. 4,

pp. 451–490. Oct. 1991.

[166] G. C. Necula, J. Condit, M. Harren, S. Mcpeak, and W. Weimer. CCured: Type-safe
retro�tting of legacy software. ACM Transactions on Programming Languages and
Systems (TOPLAS). vol. 27. no. 3, pp. 477–526. May 2005.

[167] R. Roemer, E. Buchanan, H. Shacham, and S. Savage.Return-oriented programming:
Systems, languages, and applications. ACMTransactions on Information and System
Security (TISSEC). vol. 15. no. 1. Mar. 2012.

[168] S. Volckaert, B. Coppens, and B. de Sutter. Cloning your gadgets: Complete ROP
attack immunity with multi-variant execution. IEEE Transactions on Dependable
and Secure Computing (TDSC). vol. 13. no. 4, pp. 437–450. Jul. 2015.

Books
[169] A. E. Anderson and W. J. Heinze. C++ Programming and Fundamental Concepts.

Prentice Hall, 1992.

[170] M. Gorman. Understanding the Linux Virtual Memory Manager. Prentice Hall,

2007.

[171] U. Khedker, A. Sanyal, and B. Karkare. Data Flow Analysis: Theory and Practice.

CRC Press, 2009.

[172] A. Słowińska. Using Information Flow Tracking to Protect Legacy Binaries.
Vrije Universiteit Amsterdam, May 2012.

Technical Reports and Documentation
[173] ARM Limited. ARM architecture reference manual. ARMv7-A and ARMv7-R

edition. 2012.

[174] ARM Limited. ARM architecture reference manual. ARMv8, for ARMv8-A ar-
chitecture pro�le. 2013.

[175] CodeSourcery, Compaq, EDG, HP, IBM, Intel, Red Hat, and SGI. Itanium C++ ABI
(Revision: 1.83). http://refspecs.linuxbase.org/cxxabi-1.83.html. 2018.

[176] A. Fog. Calling conventions for di�erent C++ compilers and operating systems.
http://agner.org/optimize/calling_conventions.pdf. 2018.

[177] JEDEC Solid State Technology Association. DDR3 SDRAM speci�cation. JESD79-3F.

2012.

[178] JEDEC Solid State Technology Association. Low power double data 4 (LPDDR4).
JESD209-4A. 2015.

http://refspecs.linuxbase.org/cxxabi-1.83.html
http://agner.org/optimize/calling_conventions.pdf

i
i

i
i

i
i

i
i

226 REFERENCES

[179] Linux kernel documentation. Transparent hugepage support. https://www.kernel.

org/doc/Documentation/vm/transhuge.txt.

[180] M. Fossi, E. Johnson, D. Turner, T. Mark, J. Blackbird, D. McKinney, M. K. Low, T.

Adams, M. P. Laucht, and J. Gough. Symantec report on the underground econ-
omy. Symantec. Technical Report. Nov. 2008.

[181] I. Fratric. Runtime prevention of return-oriented programming attacks. Uni-

versity of Zagreb. Technical Report. Sep. 2012.

[182] M. Lanteigne. A tale of two hammers: A brief rowhammer analysis of AMD vs.
Intel. Third I/O Inc. Technical Report. May 2016.

[183] M. Lanteigne. How rowhammer could be used to exploit weaknesses in com-
puter hardware. Third I/O Inc. Technical Report. Mar. 2016.

[184] S. Sinnadurai, Q. Zhao, and W.-F. Wong. Transparent runtime shadow stack: Pro-
tection against malicious return address modi�cations. National University of

Singapore, Singapore-MIT Alliance. Technical Report. Feb. 2004.

Online
[185] S. Andersen and V. Abella. Part 3: Memory protection technologies. Sep. 2004.

[Online]. Available: http://technet.microsoft.com/en-us/library/bb457155.aspx.

[186] Apple. About the security content of Mac EFI security update 2015-001. Jun.

2015. [Online]. Available: https://support.apple.com/en-us/HT204934.

[187] A. Arcangeli. Transparent hugepage support. Aug. 2010. [Online]. Available: http:

//www.linux-kvm.org/images/9/9e/2010-forum-thp.pdf.

[188] L. Campbell. Exploiting NVMAP to escape the Chrome sandbox - CVE-2014-
5332. Jan. 2015. [Online]. Available: https://googleprojectzero.blogspot.com/2015/01/

exploiting-nvmap-to-escape-chrome.html.

[189] J. Corbet.Contiguousmemory allocation for drivers. Jul. 2010. [Online]. Available:

https://lwn.net/Articles/396702/.

[190] J. Corbet.A reworked contiguousmemory allocator. Jun. 2011. [Online]. Available:

https://lwn.net/Articles/447405/.

[191] J. Corbet. Smarter shrinkers. May 2013. [Online]. Available: https://lwn.net/Articles/

550463/.

[192] J. Corbet. Memory protection keys. May 2015. [Online]. Available: https://lwn.net/

Articles/643797/.

[193] dcypher. And the nominees for the dutch cyber security research award are...
Mar. 2016. [Online]. Available: http://www.ictopen.nl/news/and-the-nominees-for-

the-dutch-cyber-security-research-award-are.

[194] dcypher. Award winners DCSRP 2017 and BCMT 2017 (ICT.OPEN 2017). Mar.

2017. [Online]. Available: https://www.dcypher.nl/en/content/award-winners-dcsrp-

2017-and-bcmt-2017-ictopen-2017.

[195] dcypher. Announcement: Nominations for the DCSRP award 2018. Feb. 2018.

[Online]. Available: https://www.dcypher.nl/en/content/announcement-nominations-

dcsrp-award-2018.

https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://www.kernel.org/doc/Documentation/vm/transhuge.txt
http://technet.microsoft.com/en-us/library/bb457155.aspx
https://support.apple.com/en-us/HT204934
http://www.linux-kvm.org/images/9/9e/2010-forum-thp.pdf
http://www.linux-kvm.org/images/9/9e/2010-forum-thp.pdf
https://googleprojectzero.blogspot.com/2015/01/exploiting-nvmap-to-escape-chrome.html
https://googleprojectzero.blogspot.com/2015/01/exploiting-nvmap-to-escape-chrome.html
https://lwn.net/Articles/396702/
https://lwn.net/Articles/447405/
https://lwn.net/Articles/550463/
https://lwn.net/Articles/550463/
https://lwn.net/Articles/643797/
https://lwn.net/Articles/643797/
http://www.ictopen.nl/news/and-the-nominees-for-the-dutch-cyber-security-research-award-are
http://www.ictopen.nl/news/and-the-nominees-for-the-dutch-cyber-security-research-award-are
https://www.dcypher.nl/en/content/award-winners-dcsrp-2017-and-bcmt-2017-ictopen-2017
https://www.dcypher.nl/en/content/award-winners-dcsrp-2017-and-bcmt-2017-ictopen-2017
https://www.dcypher.nl/en/content/announcement-nominations-dcsrp-award-2018
https://www.dcypher.nl/en/content/announcement-nominations-dcsrp-award-2018

i
i

i
i

i
i

i
i

REFERENCES 227

[196] J. Edge. Building the kernel with clang. Sep. 2017. [Online]. Available: https://lwn.

net/Articles/734071/.

[197] M. Ghasempour, M. Lujan, and J. Garside. ARMOR: A run-time memory hot-row
detector. 2015. [Online]. Available: http://apt.cs.manchester.ac.uk/projects/ARMOR/

RowHammer/.

[198] Google. ion: Disable ION_HEAP_TYPE_SYSTEM_CONTIG. Nov. 2016. [Online].

Available: https://android.googlesource.com/kernel/msm/+/android-6.0.1_r0.134%

5C%5E%5C%21/.

[199] Google. Low RAM con�guration. Dec. 2017. [Online]. Available: https://source.

android.com/devices/tech/perf/low-ram.

[200] Google. Testing UI performance. Apr. 2018. [Online]. Available: https://developer.

android.com/training/testing/performance.

[201] J. Hertz and T. Newsham. Project triforce: Run AFL on everything! Jun. 2016.

[Online]. Available: https : / /www.nccgroup. trust /us /about - us /newsroom- and-

events/blog/2016/june/project-triforce-run-a�-on-everything/.

[202] Hewlett Packard. Moonshot component pack version 2015.05.0 release notes.
May 2015. [Online]. Available: https://support.hpe.com/hpsc/doc/public/display?

docId=c04676483.

[203] C. Lameter. Light weight event counters V4. Jun. 2006. [Online]. Available: https:

//lwn.net/Articles/188327/.

[204] Lenovo. Row hammer privilege escalation. Mar. 2015. [Online]. Available: https:

//support.lenovo.com/us/en/product_security/row_hammer.

[205] Microsoft. A detailed description of the data execution prevention (DEP) fea-
ture inWindows XP Service Pack 2, Windows XP Tablet PC Edition 2005, and
Windows Server 2003. Sep. 2006. [Online]. Available: https://support.microsoft.com/

en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-

feature-in.

[206] MITRE Corporation. Vulnerabilities by type. Jan. 2018. [Online]. Available: https:

//www.cvedetails.com/vulnerabilities-by-types.php.

[207] M. Nazarewicz. A deep dive into CMA. Mar. 2012. [Online]. Available: https://lwn.

net/Articles/486301/.

[208] NYU Tandon School of Engineering. CSAW’17 Applied Research Winners. Dec.

2017. [Online]. Available: https://csaw.engineering.nyu.edu/research/csaw17-applied-

research-winners.

[209] PaX Team.Address space layout randomization (ASLR). Mar. 2003. [Online]. Avail-

able: https://pax.grsecurity.net/docs/aslr.txt.

[210] Pwnie Awards LLC. Nominees for the pwnie awards 2017. Aug. 2017. [Online].

Available: https://pwnies.com/archive/2017/nominations/.

[211] Pwnie Awards LLC. Pwnie awards winners. Aug. 2017. [Online]. Available: https:

//pwnies.com/archive/2017/winners/.

[212] Pwnie Awards LLC. Nominees for the pwnie awards 2018. Accessed: September 1,
2018. Aug. 2018. [Online]. Available: http://pwnies.com/nominations/.

[213] Red Hat. How to use, monitor, and disable transparent hugepages in Red Hat
Enterprise Linux 6 and 7? Sep. 2015. [Online]. Available: https://access.redhat.com/

solutions/46111.

https://lwn.net/Articles/734071/
https://lwn.net/Articles/734071/
http://apt.cs.manchester.ac.uk/projects/ARMOR/RowHammer/
http://apt.cs.manchester.ac.uk/projects/ARMOR/RowHammer/
https://android.googlesource.com/kernel/msm/+/android-6.0.1_r0.134%5C%5E%5C%21/
https://android.googlesource.com/kernel/msm/+/android-6.0.1_r0.134%5C%5E%5C%21/
https://source.android.com/devices/tech/perf/low-ram
https://source.android.com/devices/tech/perf/low-ram
https://developer.android.com/training/testing/performance
https://developer.android.com/training/testing/performance
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-everything/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-everything/
https://support.hpe.com/hpsc/doc/public/display?docId=c04676483
https://support.hpe.com/hpsc/doc/public/display?docId=c04676483
https://lwn.net/Articles/188327/
https://lwn.net/Articles/188327/
https://support.lenovo.com/us/en/product_security/row_hammer
https://support.lenovo.com/us/en/product_security/row_hammer
https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in
https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in
https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://lwn.net/Articles/486301/
https://lwn.net/Articles/486301/
https://csaw.engineering.nyu.edu/research/csaw17-applied-research-winners
https://csaw.engineering.nyu.edu/research/csaw17-applied-research-winners
https://pax.grsecurity.net/docs/aslr.txt
https://pwnies.com/archive/2017/nominations/
https://pwnies.com/archive/2017/winners/
https://pwnies.com/archive/2017/winners/
http://pwnies.com/nominations/
https://access.redhat.com/solutions/46111
https://access.redhat.com/solutions/46111

i
i

i
i

i
i

i
i

228 REFERENCES

[214] M. Salyzyn.AOSP commit 0549ddb9: "upstream: Pagemap:Donot leak physical
addresses to non-privileged userspace. Nov. 2015. [Online]. Available: https : / /

android-review.googlesource.com/c/kernel/common/+/182766.

[215] SANS. CWE/SANS top 25 most dangerous software errors. Jun. 2011. [Online].

Available: https://www.sans.org/top25-software-errors/.

[216] M. Seaborn and T. Dullien. Exploiting the DRAM rowhammer bug to gain kernel
privileges. Mar. 2015. [Online]. Available: https://googleprojectzero.blogspot.com/

2015/03/exploiting-dram-rowhammer-bug-to-gain.html.

[217] S. Semwal. DMA bu�er sharing API guide. Apr. 2012. [Online]. Available: https:

//lwn.net/Articles/489703/.

[218] S. Semwal. dma-buf constraints-enabled allocation helpers. Oct. 2014. [Online].

Available: https://lwn.net/Articles/615892/.

[219] K. A. Shutemov. Linux commit ab676b7d: "pagemap: Do not leak physical ad-
dresses to non-privileged userspace". Mar. 2015. [Online]. Available: https : / /

git . kernel . org / pub / scm / linux / kernel / git / torvalds / linux . git / commit / ?id =

ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce.

[220] K. A. Shutemov. THP-enabled tmpfs/shmem using compound pages. May 2016.

[Online]. Available: https://lwn.net/Articles/687352/.

[221] Solar Designer. Getting around non-executable stack (and �x). Aug. 1997. [On-

line]. Available: http://seclists.org/bugtraq/1997/Aug/63.

[222] J. Stultz. Integrating the ION memory allocator. Sep. 2013. [Online]. Available:

https://lwn.net/Articles/565469/.

[223] J. Stultz. The Android graphics microconference. Oct. 2013. [Online]. Available:

https://lwn.net/Articles/569704/.

[224] Unity. Mobile (Android) hardware stats. Mar. 2017. [Online]. Available: http : / /

hwstats.unity3d.com/mobile/cpu-android.html.

[225] V. van der Veen. Trends in memory errors. Feb. 2017. [Online]. Available: https:

//vvdveen.com/memory-errors/.

[226] J. Vander Stoep. Protecting Android with more Linux kernel defenses. Jul. 2016.

[Online]. Available: https://android-developers.googleblog.com/2016/07/protecting-

android-with-more-linux.html.

[227] VMware. Security considerations and disallowing inter-virtual machine trans-
parent page sharing. Oct. 2014. [Online]. Available: https://kb.vmware.com/s/article/

2080735.

[228] A. Vorontsov. Android low memory killer vs. memory pressure noti�cations.
Dec. 2011. [Online]. Available: https://lkml.org/lkml/2011/12/18/173.

[229] T. M. Zeng. The Android ION memory allocator. Feb. 2012. [Online]. Available:

https://lwn.net/Articles/480055/.

[230] W. Zhiyuan and J. Criswell. llvm DSA - reproduce the result in PLDI 07 paper.
May 2015. [Online]. Available: http : / / lists .cs .uiuc .edu/pipermail / llvmdev/2015-

5/085390.html.

https://android-review.googlesource.com/c/kernel/common/+/182766
https://android-review.googlesource.com/c/kernel/common/+/182766
https://www.sans.org/top25-software-errors/
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://lwn.net/Articles/489703/
https://lwn.net/Articles/489703/
https://lwn.net/Articles/615892/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
https://lwn.net/Articles/687352/
http://seclists.org/bugtraq/1997/Aug/63
https://lwn.net/Articles/565469/
https://lwn.net/Articles/569704/
http://hwstats.unity3d.com/mobile/cpu-android.html
http://hwstats.unity3d.com/mobile/cpu-android.html
https://vvdveen.com/memory-errors/
https://vvdveen.com/memory-errors/
https://android-developers.googleblog.com/2016/07/protecting-android-with-more-linux.html
https://android-developers.googleblog.com/2016/07/protecting-android-with-more-linux.html
https://kb.vmware.com/s/article/2080735
https://kb.vmware.com/s/article/2080735
https://lkml.org/lkml/2011/12/18/173
https://lwn.net/Articles/480055/
http://lists.cs.uiuc.edu/pipermail/llvmdev/2015-5/085390.html
http://lists.cs.uiuc.edu/pipermail/llvmdev/2015-5/085390.html

i
i

i
i

i
i

i
i

REFERENCES 229

Talks
[231] L. Abbott. Lessons from ION. Embedded Linux Conference (ELC). Apr. 2016.

[232] T. Dullien. Three things that rowhammer taught me. Null Singapore. Mar. 2016.

[233] N. Herath and A. Fogh. These are not your grand daddy’s CPU performance
counters — CPU hardware performance counters for security. Black Hat USA.

Aug. 2015.

[234] T. de Raadt. Exploit mitigation techniques. OpenCON. Nov. 2005.

[235] M. Seaborn and T. Dullien. Exploiting the DRAM rowhammer bug to gain kernel
privileges. Black Hat USA. Aug. 2015.

[236] S. Semwal. Upstreaming ION features: Issues that remain. Linux Plumbers Con-
ference. Aug. 2015.

[237] C. Tice. Improving function pointer security for virtual method dispatches.
GNU Tools Cauldron. Jul. 2012.

Source Code
[238] B. Aker. memslap: Load testing and benchmarking a server. 2013. [Online]. Avail-

able: http://docs.libmemcached.org/bin/memslap.html.

[239] Apache Software Foundation. Apache benchmark. 2013. [Online]. Available: http:

//httpd.apache.org/docs/2.0/programs/ab.html.

[240] A. Kopytov. sysbench: Scriptable database and systemperformance benchmark.

May 2018. [Online]. Available: https://github.com/akopytov/sysbench.

[241] C. Mabee. cookie-butter: Python script formaking graphics performance charts
for an Android app. Apr. 2016. [Online]. Available: https://github.com/Turnsole/

cookie-butter.

[242] G. Rodola. pyftpdlib: Extremely fast and scalable python ftp server library. May

2018. [Online]. Available: https://github.com/giampaolo/pyftpdlib.

[243] D. Tucker. OpenSSH portable regression tests. Dec. 2014. [Online]. Available: http:

//www.dtucker.net/openssh/regress.

[244] V. van der Veen. Drammer: Native binary for testing Android phones for the
rowhammer bug. Oct. 2016. [Online]. Available: https://github.com/vusec/drammer.

[245] B. Zehm. sendEmail: An email program for sending smtp mail from a com-
mand line. Sep. 2009. [Online]. Available: http://caspian.dotconf.net/menu/Software/

SendEmail.

http://docs.libmemcached.org/bin/memslap.html
http://httpd.apache.org/docs/2.0/programs/ab.html
http://httpd.apache.org/docs/2.0/programs/ab.html
https://github.com/akopytov/sysbench
https://github.com/Turnsole/cookie-butter
https://github.com/Turnsole/cookie-butter
https://github.com/giampaolo/pyftpdlib
http://www.dtucker.net/openssh/regress
http://www.dtucker.net/openssh/regress
https://github.com/vusec/drammer
http://caspian.dotconf.net/menu/Software/SendEmail
http://caspian.dotconf.net/menu/Software/SendEmail

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

Summary

30 years ago, in November 1988, Robert Morris wreaked havoc on the Internet.

Exploiting already known, but poorly patched software vulnerabilities, his worm
infected 10% of all connected machines. Parts of the Internet were unavailable

for days, and costs were estimated to reach millions of dollars. Whether or not

accidentally, Morris’ actions had immense consequences: not only did he become

the �rst person to be tried and convicted under the 1986 Computer Fraud and

Abuse Act, Morris also profoundly shaped the �eld of computer security. Ever

since the events of November 2, 1988, security researchers in both industry and

academia have put endless of hours in studying and mitigating vulnerabilities, in

particular those of the type that Morris exploited: memory errors.

Today, despite three decades of research, memory errors still undermine the

security of our systems. Even if we consider only classic bu�er over�ows — a

popular subset of memory error vulnerabilities — this class of memory errors

has been lodged in the top-3 of the top 25 most dangerous software errors for

years. Experience shows that attackers, motivated nowadays by pro�t rather

than fun, have been e�ective at �nding ways to circumvent protective measures.

Many attacks today start with a memory error corruption that provides an initial

foothold for further infection.

In this dissertation, we analyze and advance computer security defenses that

aim to stop the exploitation of memory errors. We intersect this domain from

two core dimensions where such errors occur: in software, and in hardware.

First, we analyze advanced code-reuse attacks — one of the most elaborate

types of software-based memory error exploitation — and how we can defend

legacy binaries against them. One of the most promising ways to mitigate code-

reuse attacks is Control-Flow Integrity (CFI). Unfortunately, enforcing it without

access to source code is hard in practice, and existing defenses often leave enough

wiggle room for an attacker to launch successful exploits. In this dissertation, we

propose new binary-level defenses that improve the precision of CFI — reducing

231

i
i

i
i

i
i

i
i

232 SUMMARY

the wiggle room just enough to stop attacks from being successful. Moreover,

we explore how much leeway an attacker still has after applying di�erent types

of code-reuse defenses, including our own.

Second, we study Rowhammer — a hardware-based memory error — and

its impact on mobile platforms. This disturbance error is the result of the ever

increasing density of memory chips, a necessity to be able to put more and faster

DRAM memory in devices. It equips attackers with a powerful primitive: a single

bit �ip in memory that is not under control of the attacker. Ever since its discov-

ery, Rowhammer-based memory corruption attacks have been used to exploit a

variety of ecosystems, including the desktop, browser, and even the cloud. In

this work, we show that mobile devices are also susceptible to Rowhammer. We

demonstrate how an attacker can leverage this to escalate privileges. Moreover,

we propose a lightweight countermeasure that can eradicate the majority of the

Rowhammer attack surface.

i
i

i
i

i
i

i
i

Samenva�ing

30 jaar geleden, in november 1988, richtte Robert Morris een ravage aan op het In-

ternet. Door het uitbuiten van reeds bekende, maar niet-geüpdatete kwetsbaarhe-

den, infecteerde zijnworm 10% van alle verbonden machines. Delen van het Inter-

net waren dagen onbereikbaar en kosten werden geschat tot in de miljoenen. Al

dan niet per ongeluk, Morris’ daden hadden immense gevolgen: niet alleen werd

hij de eerste persoon die veroordeeld werd onder de onlangs in werking getreden

Wet Computervredebreuk, Morris heeft er vooral voor gezorgd dat het onder-

werp computerbeveiliging de�nitief op de kaart is gezet. Sinds de gebeurtenis-

sen van 2 november 1988 zijn onderzoekers uit zowel het bedrijfsleven als de

academische wereld continu bezig met het bestuderen en bestrijden van kwets-

baarheden, in het bijzonder die van het type dat Morris misbruikte: geheugen-

fouten.

Vandaag de dag, ondanks drie decennia aan onderzoek, ondermijnen geheugen-

fouten nog steeds de veiligheid van onze systemen. Zelfs als we alleen de klassieke

bu�er over�ow beschouwen — een populaire deelverzameling van geheugen-

fouten — dan zien we dat deze al jaren geparkeerd staat in de top 3 van de

top 25 gevaarlijkste programmafouten. Ervaring leert dat aanvallers e�ectief

zijn in het vinden van nieuwe manieren om beschermende maatregelingen te

omzeilen. Veel aanvallen beginnen tegenwoordig met een geheugenfout als een

eerste handvat voor verdere infectie.

In deze dissertatie analyseren en bevorderen we computerbeveiliging met als

doel misbruik van geheugenfouten te voorkomen. We besnijden dit domein va-

nuit twee kerndimensies waarin dergelijke fouten kunnen voorkomen: in pro-

grammatuur (software) en in computerapparatuur (hardware).

We beginnen met een analyse van zogenaamde "geavanceerde code-hergebruik

aanvallen" — een van de doordachtste manieren om geheugenfouten in program-

matuur uit te buiten — en hoe we oudere binaire bestanden ertegen kunnen wape-

nen. Een veelbelovende maatregel tegen code-hergebruik aanvallen is besturings-

233

i
i

i
i

i
i

i
i

234 SAMENVATTING

stroomintegriteit. Helaas is het in de praktijk lastig om besturingsstroominte-

griteit toe te passen op programmatuur zonder toegang te hebben tot haar oor-

spronkelijke broncode; bestaande verdedigingen laten daarom vaak steken vallen

waardoor een aanvaller alsnog kwetsbaarheden met succes kan misbruiken. In

deze dissertatie stellen we nieuwe verdedigingen voor die de precisie van be-

sturingsstroomintegriteit kunnen verbeteren voor binaire bestanden — we re-

duceren de speelruimte dermate dat aanvallen niet langer zullen slagen. Tevens

kijken we naar hoeveel dergelijke speelruimte een aanvaller nog heeft wanneer

verschillende maatregelen tegen code-hergebruik aanvallen worden toegepast,

inclusief die van ons zelf.

Vervolgens bestuderen we rijhamer — een geheugenfout in de computerappa-

ratuur — en de impact van rijhamer op mobiele platformen. Deze storingsfout is

het resultaat van de steeds maar toenemende dichtheid van geheugenchips, een

noodzaak om apparatuur uit te kunnen rusten met meer en sneller geheugen.

Rijhamer geeft aanvallers een krachtig primitief: de waarde van een enkele bit

in geheugen waar de aanvaller geen toegang tot heeft, kan worden omgegooid.

Sinds haar ontdekking is rijhamer gebruikt om geheugenfout-gebaseerde aan-

vallen uit te voeren op een tal van ecosystemen, inclusief de desktop PC, de

browser, en zelfs de cloud. In deze dissertatie laten we zien dat ook mobiele ap-

paraten vatbaar zijn voor rijhamer. We presenteren hoe een aanvaller dit kan uit-

buiten om privileges te escaleren. Daarnaast stellen we een goedkope maatregel

voor die het grootste deel van het rijhamer-aanvalsoppervlak kan elimineren.

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

	Acknowledgements
	Contents
	Publications
	1 Introduction
	2 PathArmor
	2.1 Introduction
	2.2 Context-Sensitive CFI
	2.2.1 Legal Flows
	2.2.2 Challenges

	2.3 *
	2.3.1 Kernel Module
	2.3.2 Path Analyzer
	2.3.3 Dynamic Instrumentation

	2.4 Implementation
	2.5 Evaluation
	2.5.1 Security
	2.5.2 Analysis Time
	2.5.3 Runtime Performance
	2.5.4 LBR Pollution
	2.5.5 Memory Usage

	2.6 Discussion
	2.6.1 History-Flushing Attacks
	2.6.2 Non-Control Data Attacks
	2.6.3 Endpoint-Pruning Attacks
	2.6.4 Instrumentation-Tampering Attacks

	2.7 Related Work
	2.8 Conclusion

	3 TypeArmor
	3.1 Introduction
	3.2 Motivation: Key Requirements for COOP
	3.3 Overview
	3.3.1 Threat Model and Assumptions
	3.3.2 *: Invariants for Targets and Callsites
	3.3.3 *'s Impact on COOP

	3.4 Static Analysis
	3.4.1 Callee Analysis
	3.4.2 Callsite Analysis
	3.4.3 Return Values

	3.5 Runtime Enforcement
	3.5.1 Shadow Code Memory Preparation
	3.5.2 CFI Enforcement
	3.5.3 CFC Enforcement

	3.6 Mitigating Advanced Code-Reuse Attacks
	3.6.1 Effectiveness Against COOP
	3.6.2 Stopping COOP Exploits in Practice
	3.6.3 Control Jujutsu
	3.6.4 COOP Extensions
	3.6.5 Pure Data-Only Attacks

	3.7 Performance
	3.8 Security Analysis
	3.9 Related Work
	3.10 Conclusion

	4 VPS
	4.1 Introduction
	4.2 at the Binary Level
	4.2.1 Virtual Function Tables
	4.2.2 Object Initialization
	4.2.3 Virtual Function Dispatch
	4.2.4 VTable Hijacking Attacks

	4.3 Related Work
	4.3.1 Binary-Only Defenses
	4.3.2 Defenses Requiring Source Code

	4.4 Threat Model
	4.5 System Overview
	4.6 Analysis Approach
	4.6.1 Vtable Identification
	4.6.2 Object Initialization Operations
	4.6.3 Virtual Callsite Candidates
	4.6.4 Virtual Callsite Verification
	4.6.5 Dynamic Virtual Call Profiling

	4.7 Instrumentation Approach
	4.7.1 Object Initialization
	4.7.2 Virtual Callsites

	4.8 Implementation
	4.9 Evaluation
	4.9.1 Virtual Callsite Identification Accuracy
	4.9.2 Object Initialization Accuracy
	4.9.3 Performance

	4.10 Discussion
	4.10.1 Counterfeit Object-Oriented Programming
	4.10.2 Limitations

	4.11 Conclusion

	5 Newton
	5.1 Introduction
	5.2 Threat Model
	5.3 Overview of Code-Reuse Defenses
	5.4 Overview of *
	5.4.1 Constraints
	5.4.2 Write Constraint Manager
	5.4.3 Target Constraint Manager
	5.4.4 Command Manager

	5.5 Mapping Defenses
	5.5.1 Deriving Constraints
	5.5.2 Implementation

	5.6 Evaluation
	5.6.1 In-Depth Analysis of nginx
	5.6.2 Generalized Results

	5.7 Constructing Attacks
	5.7.1 CsCFI
	5.7.2 CPI

	5.8 Related Work
	5.9 Conclusion

	6 Drammer
	6.1 Introduction
	6.2 Threat Model
	6.3 Rowhammer Exploitation
	6.3.1 Memory Hardware
	6.3.2 The Rowhammer Bug
	6.3.3 Exploitation Primitives

	6.4 The First Flip
	6.4.1 RowhARMer

	6.5 Exploitation on the x86 Architecture
	6.5.1 P1. Fast Uncached Memory Access
	6.5.2 P2. Physical Memory Massaging
	6.5.3 P3. Physical Memory Addressing
	6.5.4 Challenges on Mobile Devices

	6.6 The Drammer Attack
	6.6.1 Mobile Device Memory
	6.6.2 DMA Buffer Management
	6.6.3 Physical Memory Massaging
	6.6.4 *
	6.6.5 Exploitable Templates
	6.6.6 Root Privilege Escalation

	6.7 Implementation
	6.7.1 Android Memory Management
	6.7.2 Noise Elimination

	6.8 Generalization
	6.9 Evaluation
	6.9.1 Mobile Row Sizes
	6.9.2 Empirical Study
	6.9.3 Root Privilege Escalation

	6.10 Mitigation and Discussion
	6.10.1 Existing Rowhammer Defenses
	6.10.2 Countermeasures Against Drammer

	6.11 Related Work
	6.12 Conclusion

	7 Guardion
	7.1 Introduction
	7.2 Threat Model
	7.3 Background
	7.3.1 The Rowhammer Vulnerability
	7.3.2 Rowhammer Exploitation
	7.3.3 Android Memory Management

	7.4 Overview of Software-based Defenses
	7.4.1 Preventing Bit Flips (flips)
	7.4.2 Preventing Physical Memory Massaging (massage)

	7.5 RAMpage: Breaking the State-of-the-Art
	7.5.1 Exploiting Non-Contiguous Memory
	7.5.2 Exploiting System-wide Isolation

	7.6 GuardION: Fine-grained Memory Isolation
	7.6.1 Isolating ION's Contiguous Heap
	7.6.2 Isolating ION's System Heap
	7.6.3 Isolating ION's CMA Heap

	7.7 Evaluation
	7.7.1 Security Evaluation
	7.7.2 Performance and Memory Footprint
	7.7.3 Patch Complexity and Adoption

	7.8 Related Work
	7.8.1 Rowhammer Attacks
	7.8.2 Rowhammer Defenses

	7.9 Conclusion

	8 Conclusion
	References
	Conference Proceedings
	Articles
	Books
	Technical Reports and Documentation
	Online
	Talks
	Source code

	Summary
	Samenvatting

