
A Scrutiny of Frederickson’s Distributed

Breadth-First Search Algorithm

Victor van der Veen
Faculty of Computer Science
Vrije Universiteit Amsterdam

vvdveen@cs.vu.nl

September 2008

Abstract

Frederickson outlined a distributed breadth-first search (BFS) algo-
rithm which constructs a BFS tree in levels. The description of the al-
gorithm is short and first-in-first-out (FIFO) channels are assumed. In
this paper, we present a detailed description of a modified verison of the
algorithm and we show that the algorithm functions in a non-FIFO envi-
ronment. To allow a programmer to implement the algorithm, pseudocode
of the adapted algorithm is provided.

1 Introduction

Consider a problem in which information must be routed among nodes of a
network. A fundamental question in distributed computing is how to route
this information, involving a minimum number of nodes or paths having lowest
costs. For this, we need algorithms that construct such a “best” path between
nodes in a network. Once optimal paths have been determined, messages can
be routed through the network efficiently.

To route information using a path with lowest costs, all-pairs shortest-path
algorithms are used. Routing information using the minimum number of nodes
can be done with a breadth-first search (BFS) algorithm.

Frederickson [1985] outlined a distributed BFS algorithm which he used for
constructing an all-pairs shortest-path algorithm. However, this BFS algorithm
is used as a “building block” and its description is not very detailed. The
description assumes that messages in the algorithm are processed in a first-in-
first-out (FIFO) fashion.

Tel [2000] reviewed and modified Frederickson’s BFS algorithm. His notation
of the algorithm, however, is incomplete and still assumes a FIFO-environment.
Tel [2006] outlined a fix, but again, the FIFO assumption remained. Van
Moolenbroek [2006] suggested another fix, but no further research was done
on the subject.

In this paper, we present a detailed description of Frederickson’s distributed
BFS algorithm, filling in the remaining gaps. We also provide pseudocode of
the algorithm to illustrate how the algorithm operates. The correctness of the
algorithm when messages are processed in a non-FIFO fashion is demonstrated.

1

The outline of this paper is as follows. We first provide some preliminaries
in Section 2, followed by some related research on BFS algorithms in Section
3. Then, as in the original paper, we divide the description of Frederickson’s
BFS algorithm in a “simple” (Section 4) and an “advanced” part (Section 5).
Section 4 contains a description, example and complexity analysis of the Simple
Algorithm. Section 5 provides, besides a description and complexity analysis of
the Advanced Algorithm, also more information about previous notations of the
algorithm. We also show that the Advanced Algorithm functions in a non-FIFO
environment. Finally, we state our conclusions in Section 6.

Note that since some figures used in this paper were too large to fit with the
text, we moved them to the appendix.

2 Preliminaries

In this paper, we outline a distributed algorithm for constructing BFS trees.
BFS trees provide useful building blocks for a number of routing and control
functions in communication networks. Such a network can be seen as a graph,
and hence graph theory is relevant to the subject of this paper. Although it is
assumed that the reader has basic knowledge about graph theory, we provide
some important definitions in this section.

For a formal definition of a BFS tree, the following two definitions are re-
quired. We denote a graph as G = (V,E), V being the set of nodes and E being
the set of edges between these nodes.

Definition 1 (Tree). A tree is an undirected, connected, acyclic graph, having
only one root node.

Definition 2 (Spanning Tree). Every connected graph G = (V,E) contains a
spanning tree; that is, a set E′ ⊆ E can be chosen, such that (V,E′) is a tree.

Definition 3 (Minimum-Hop Path). The shortest path between two nodes is
the minimum-hop path.

With these building blocks, the formal definition of a BFS tree is the following.

Definition 4 (Breadth-First Search Tree). A spanning tree T , starting from u,
of network G is a Breadth-First Search (BFS) Tree if, for each node, the tree
path to u is a minimum-hop path in G.

A BFS algorithm is thus an algorithm that constructs a BFS tree.
In this paper, we also have closer look at the behavior of the BFS algorithm

when non-FIFO channels are used. To describe different situations that might
occur when such channels are used, the terms delayed message and overtaken are
introduced. Consider two nodes u and v which are connected by one non-FIFO
channel c:

• At time t1, node u sends a message m to v.
• At time t2 > t1, node u sends a message m′ to v.
• At time t3 > t2, the message m′ arrives at v.
• At time t4 > t3, the message m arrives at v.

2

It is now said that m is a delayed message and that m is overtaken by m′.
We assume in this paper that channels between nodes are reliable, but not

necessarily FIFO. It is also assumed that the network on which the algorithm is
applied is modeled by an undirected graph G = (V,E) with V being the nodes
of the network and E being the edges between the nodes. Nodes initially are
unaware of the network topology but are aware of their adjacent edges. They
have copies of the algorithm and know whether they are the initiator of the
algorithm or not.

3 Related Work

In this section, we present some related research on distributed BFS algorithms.
Note that there are differences between distributed algorithms and central-

ized (uniprocessor) algorithms. A centralized BFS algorithm is rather simple:
the root node of the tree sends messages to its neighbors. When a node receives
messages, it picks one of the senders as its parent and forwards the message to
its unknown neighbors. Since there is centralized control, sent messages arrive
instantly. Sending and receiving of a message is thus one atomic operation. It
is said that communication is synchronous.

To determine the efficiency of algorithms, we examine the complexity of
it. The above BFS algorithm has a perferct worst-case message complexity of
O(2|E|). This means that the number of messages used in this algorithm is in the
order of 2 times the number of edges. Unfortunatly, above centralized algorithm
cannot be applied to a distributed system like for example the Internet. For
such systems, distributed algorithms are needed. This is due to the fact that
in a distributed system, there is no centralized control. Sending and receiving
messages are different operations, and communiction is thus asynchronous.

Table 1 Worst-case message complexity of existing BFS algorithms

Algorithm Messages
Toueg [1980] Θ (|V ||E|)

Chandy and Misra [1982] O
(
|V |2|E|

)
Cheung [1983] O

(
|V |3

)
Frederickson [1985] O

(
|V |2

)
Frederickson [1985] O

(
|V |
√
|E|
)

Awerbuch and Gallager [1985] O
(
|E|2
√

log |V | log log |V |
)

Zhu and Cheung [1987] O
(
|V |2

)
Awerbuch and Gallager [1987] O

(
|V |1.6 + |E|

)
Awerbuch [1989] O

(
|E|

1+ 1
4√log |V |

)
Awerbuch et al. [1989] O

(
|E|1+

√
log log |V |/ log |V |

)
Makki [1996] O (|E|)

Distributed BFS algorithms have been studied extensively by many researchers
in the past. We now provide a short overview of existing Distributed BFS algo-

3

rithms. Table 1 provides a list of these algorithms and their worst-case message
complexity. Note that the following overview is not complete. Since BFS trees
are used in a wide variety of practical applications, many more BFS algorithms1

may exist.
Observe that a BFS tree is in fact a tree of shortest-paths from a given

root node to all other nodes of a network under the assumption that each edge
has an equal weight. This means that we can use existing distributed shortest-
path algorithms for weighted graphs for constructing BFS trees. The algorithm
outlined by Chandy and Misra [1982] is such a shortest-path algorithm. Since
this algorithm is short and easy to understand, we provide a short description
of the algorithm below.

Each node u has a variable Du to store the distance to the initiator i and a
variable Nbu to store which neighbor u uses to get to i. Initially, Di = 0 and
Nbi =⊥. Du = ∞ for each u 6= i. Initiator i starts the algorithm by sending
〈mydist, 0〉 messages to its neighbors. When a node u receives 〈mydist, d〉
from a neighbor v and if d + 1 < Du, then

• Du ← d + 1
• Nbu ← v
• u sends 〈mydist, Du〉 messages to its neighbors (except to v).

Other algorithms for constructing shortest-path algorithms, for example the one
outlined by Toueg [1980], a distributed version of the Floyd-Warshall algorithm
(Cormen et al. [1990]), may also be used for constructing BFS trees.

Cheung [1983] outlined an algorithm that constructs a BFS tree of a directed
graph. The algorithm uses layering properties and labeled vertices in such a way
that each vertex is assigned its proper layer number by its parents.

As mentioned before, we will discuss in this paper two BFS algorithms out-
lined by Frederickson [1985]. Awerbuch and Gallager [1985] outlined an ex-
tension to Frederickson’s advanced BFS algorithm. This algorithm also uses
synchronization rounds, called strips, but within each strip, the exploration is
synchronized, instead of only a global synchronization between every two strips.
This reduces the worst-case message complexity. Awerbuch and Gallager [1987]
outlined another extension based on Frederickson’s advanced BFS algorithm.
The difference here is that not a static number of ` levels are explored each
round, but that each round the number of levels to explore is calculated as a
function of the number of nodes to discover.

Zhu and Cheung [1987] outlined a BFS algorithm which seems to be quiva-
lent to Frederickson’s simple algorithm. More research is however necessary to
examine whether the algorithms are entirely the same. If so, the paper by Zhu
and Cheung [1987] may be regarderd superfluous.

A very complex algorithm for constructing BFS trees was outlined by Awer-
buch [1989]. In this algorithm, multiple nodes start building a BFS trees that
are thus generated in parallel. When each node is part of a number of trees, the
partial trees are merged into a final BFS tree. To reduce the worst-case mes-
sage complexity even more, the algorithm outlined by Awerbuch et al. [1989] is
based on the same principle, but uses clusters of BFS trees which are formed
into bigger clusters. This would finally result in the desired BFS tree.

1From now on, the BFS algorithms we discuss are distributed ones, unless stated otherwise

4

Finally, Makki [1996] outlines a less harder to understand algorithm with a
better worst-case message complexity than previous algorithms. This improve-
ment is achieved by a more sophisticated synchronization.

For a more detailed introduction on above algorithms, consider Makki [1996],
Section 3.

If one is interested in the use of BFS algorithms, consider Bratislav and
Miroslaw [2007] which outlines a BFS algorithm used for cut-edge detection in
graphs. This technique is used in wireless networks, which seems to become an
important field of interest at the moment. Another example can be found in
the paper by Yoo et al. [2005]. In this paper a new parallel distributed BFS
algorithm for Blue Gene is presented. Such a parallel algorithm may be used
more in the future when grid computing becomes more important.

4 The Simple Algorithm

In this section, we outline the “simple” algorithm for constructing a BFS tree
as provided by Frederickson [1985] and Tel [2000]. In Section 4.1 we provide
a detailed description of the algorithm. To illustrate how the algorithm works
we explain an example in Section 4.2. In Section 4.3 we provide a complexity
analysis for the algorithm.

We tried to let the detailed description be as generic as possible, so that
we can adopt it later for the “advanced” algorithm. Although Frederickson’s
and Tel’s version of the Simple Algorithm are nearly the same, we based the
following description on Tel’s notation.

Figure 1: Concept of the Simple Algorithm

The main concept of the Simple Algorithm is illustrated in Figure 1. An
initiator i ∈ V is picked and starts the algorithm. Each round the next level of
the tree is explored. At some level k, the initiator sends 〈forward〉 messages
to the front nodes (nodes at the latest explored level), followed by these front
nodes sending 〈explore〉 messages to their neighbors. These “to-be-explored

5

nodes” send replies, followed by the front nodes sending their reports back to
the initiator. The initiator now may decide to start round k + 1 or to terminate
the algorithm.

4.1 Detailed description of the Simple Algorithm

Algorithm 1 Simple Algorithm – Initialization

var levelu : integer init ∞
levelu[n] : integer init ∞ for each n ∈ Neighu

parentu : process init udef
Childu : process init ∅
k : integer init 0
bvalueu : boolean init false
expectedrepliesu[n] : integer init 0 for each n ∈ Neighu

For the initiator i only, execute once:
begin

leveli ← 0
k ← 1
f o ra l l n ∈ Neighi do

Childu ← Childu ∪ {n}
send 〈explore, k〉 to n
expectedrepliesi[n]← 1

end

The Simple algorithm is started by picking an initiator, followed by the
initiator assigning itself level 0, after which the construction of level 0 of the
BFS tree is finished. To start the next round, the initiator sends 〈explore, 1〉
messages to its neighbors. This behavior is described in detail in Algorithm 1.

As can been seen from Algorithm 1, each node u keeps track of some ad-
ministration, namely its own level in the BFS tree (levelu); the levels of its
neighbor nodes (levelu[]); its parent in the BFS tree (parentu); its set of children
(Childu); the round the algorithm is in (k, only relevant for the initiator); and
two extra variables (bvalueu and expectedrepliesu[]) to perform some checks in
the algorithm. Note that it is assumed that each node u has knowledge about
its neighbor nodes in the set Neighu.

We now describe the algorithm by explaining what happens when a message
from node v arrives at node u. The three events that can occur are:

1. Node u receives 〈forward, f〉 from node v.
2. Node u receives 〈explore, f〉 from node v.
3. Node u receives 〈reverse, b〉 from node v.

These events are now discussed in detail.

1. Node u receives 〈forward, f〉 from v.

6

Algorithm 2 Simple Algorithm – Handle 〈forward〉 messages

1 For each process u, upon receipt of 〈forward, f〉 from v:
2 begin
3 bvalueu ← false
4 ∀n ∈ Neighu : replyu[n]← 0
5 i f levelu < f then
6 f o ra l l c ∈ Childu do
7 send 〈forward, f〉 to c
8 replyu[c]← replyu[c] + 1
9 i f levelu = f then

10 f o ra l l n ∈ neighu ∧ levelu[n] 6= f − 1 do
11 send 〈explore, f + 1〉 to n
12 expectedrepliesu[n]← +1
13 end

〈forward, f〉 messages are used to let the front nodes know they must send
〈explore, f +1〉 messages to their unknown neighbors. If a node u at levelu < f
receives such a 〈forward, f〉 message, it forwards it to each child [Algorithm 2,
line 5-8].
When levelu = f , u sends 〈explore, f +1〉 messages to its neighbors not already
known to be at level f − 1 [Algorithm 2, line 9-12].
When u has sent all its 〈forward, f〉 or 〈explore, f + 1〉 messages, it must wait
for an answer from each node u sent such a message to, before reporting back
to its parent. We do this in the pseudocode by storing the number of expected
reply messages in the array expectedrepliesu[]. This array consists of neighbors
from u and stores for each neighbor n how many replies u expects from n.
The report that u sends to its parent depends on the replies it received. When
at least one of the replies was a 〈reverse, true〉 message, 〈reverse, true〉 must
be reported to parentu. To store the arrival of a 〈reverse, true〉 message, we use
the boolean bvalueu, which is thus set to false at this moment and will become
true if a 〈reverse, true〉 message arrives.

2. Node u receives 〈explore, f〉 from node v.

When an 〈explore, f〉 message arrives at some node u for the first time (i.e.
when levelu = ∞), node u is discovered by v and will be added to the subtree
of v. Node v becomes the parent of u and the level of u (the depth of u in the
BFS tree) is bound to f . To let v know that u has become its child, u sends
back a reply 〈reverse, true〉 [Algorithm 3, line 3-6].
Subsequently arriving 〈explore, f〉messages at node u where levelu = f indicate
that the senders of those messages are at level f − 1. To reduce the number of
〈explore, f〉 messages that will be sent in the next round, u stores that these
nodes are at level f − 1 and sends back a 〈reverse, false〉 to let them know it
will not become their child [Algorithm 3, line 7-9].
A node u at level f may also receive 〈explore, f + 1〉 messages from a neighbor
v also at level f . Since u itself will also send an 〈explore, f + 1〉 message to v,
no reply is sent back by u and such an 〈explore, f + 1〉 message is interpreted
as a 〈reverse, false〉 message [Algorithm 3, line 10-11].

7

Algorithm 3 Simple Algorithm – Handle 〈explore〉 messages

1 For each process u, upon receipt of 〈explore, f〉 from v:
2 begin
3 i f levelu =∞ then
4 parentu ← v
5 levelu ← f
6 send 〈reverse, true〉 to v
7 else i f levelu = f then
8 levelu[v]← f − 1
9 send 〈reverse, false〉 to v

10 else i f levelu = f − 1 then
11 Interpret as 〈reverse, false〉 message
12 end

3. Node u receives 〈reverse, b〉 from v.

Algorithm 4 Simple Algorithm – Handle 〈reverse〉 messages

1 For each process u, upon receipt of 〈reverse, b〉 from v:
2 begin
3 expectedrepliesu[v]← expectedrepliesu[v]− 1
4 i f b = true then
5 Childu ← Childu ∪ {v}
6 bvalueu ← true
7 i f ∀n ∈ Neighu : replyu[n] = 0 then
8 i f parentu 6= udef then
9 send 〈reverse, bvalueu〉 to parentu

10 else i f bvalueu = true then
11 k ← k + 1
12 f o ra l l c ∈ Childu do
13 send 〈explore, k〉 to c
14 expectedrepliesi[n]← 1
15 else
16 terminate
17 end

A node u at level f > 0 waits for a reply to all 〈explore, f〉 or 〈forward, f〉
messages it sent. Such a reply is of the form 〈reverse, b〉 where b = true if and
only if a new node was added to the subtree of u.
When all 〈explore, f〉 or 〈forward, f〉 messages have been replied, u sends a
〈reverse, b〉 itself to its parent. The value of b is true if one of the received
replies was a 〈reverse, true〉 message.
The initiator at level f = 0 receives 〈reverse, b〉 messages from its children. If
a 〈reverse, true〉 message was among them, the initiator starts a new round by
sending 〈forward, f + 1〉 messages to its children. When only 〈reverse, false〉
messages arrived at the initiator, no new nodes were found in the BFS tree

8

and thus no new nodes will be discovered in a next round, resulting in the
termination of the algorithm.
If a 〈reverse, true〉 message arrives at u it is certain that v is a child of u since
the two cases in which such a message can arrive are:

1. v is just discovered by u, and thus becomes its child
2. v just discovered a new node in its subtree, and reports this back to its

parent u, so v is already a child of u.

In any case, we add v to the set of children of u (again) and we set bvalueu to
true, to store that a 〈reverse, true〉 arrived [Algorithm 4, line 4-6].
When u received all its expected replies, we distinguish two situations:

1. parentu 6= udef
2. parentu = udef (i.e. u is the initiator of the algorithm)

Since bvalueu = true if and only if at least one 〈reverse, true〉 arrived at u,
the first case causes u to send a reply 〈reverse, bvalueu〉 to parentu. In the
second case, when bvalueu = true, a new round is started by the initiator. If
bvalueu = false, the algorithm terminates [Algorithm 4, line 7-16].

4.2 Example

We will now have a look at an example of the Simple Algorithm. Consider
Figure 7. The algorithm just started the construction of level 3: the initiator r
sent 〈forward, 2〉 messages to nodes a and b.

In Figure 7a 〈forward, 2〉 messages travel from node a to c, and from node b
to d and e. Note that since each node can only have one parent in this algorithm,
node a did not send a 〈forward, 2〉 message to node d.

When the 〈forward, 2〉 messages arrives at nodes at level 2, 〈explore, 3〉
messages are sent by the nodes d and e as depicted Figure 7b. 〈explore, 3〉
messages travel to each neighbor of d and e, except for those that are at level
(2−1 =)1. Since c only has one neighbor, a, which is at level 1, c does not send
any 〈explore, 3〉 messages and reports back a 〈reverse, false〉 message to a, to
tell a that no more nodes were added to its subtree.

In Figure 7c, nodes f and g send back their replies to d and e. It seems
that the 〈explore, 3〉 from d to g arrived earlier than the 〈explore, 3〉 from
e to g, and thus g sends 〈reverse, true〉 to d and 〈reverse, false〉 to e. Note
that the 〈explore, 3〉 messages d and e exchanged were both interpreted as
〈reverse, false〉 messages, and thus were not replied. Meanwhile, since a re-
ceived a reply from all its children, a replies back to the initiator r that no new
nodes were added to its subtree by sending a 〈reverse, false〉 message.

In Figure 7d, 〈reverse〉 messages travel from d and e back to b. f and g are
now children from d and are added to its subtree. This round continues with b
sending 〈reverse, true〉 back to r, which will trigger the start of the next round.

4.3 Complexity Analysis

The construction of the BFS tree uses at most |V | exploration rounds. In each
round, an edge of the BFS tree carries at most one 〈forward〉 and one replying
〈reverse〉 message. In total, each edge carries at most one 〈explore〉 message

9

and one replying 〈reverse〉 message. The worst-case message complexity is
thus O(|V |2). As level f + 1 is computed in 2(f + 1) time units, the worst-case
message and time complexity are the same:

O(|V |2)

5 The Advanced Algorithm

In this section, we outline a more advanced BFS algorithm. This Advanced
Algorithm extends the Simple Algorithm to reduce its worst-case message com-
plexity.

We start this section with some discussion about the existing versions of the
Advanced Algorithm in Section 5.1 and 5.2 as they were outlined by Freder-
ickson [1985] and Tel [2000]. In Section 5.3 we outline the improved version of
the Advanced Algorithm. We discuss the algorithm and present a complexity
analysis of it in Section 5.4 and 5.5.

The main concept of the Advanced Algorithm is that not one level per round,
but ` levels are to be explored in each round of the algorithm. This will reduce
the message overhead in the already explored tree since less 〈forward〉 and
〈reverse〉 messages shall be sent. A drawback is that this complicates the
algorithm: nodes can suffer from parent switches, since the first arrival of an
〈explore〉 message does no longer guarantee the best minimum-hop path to
the initiator. In such a situation, a node must inform its former parent that it
will not be its child anymore. This problem is called the “old-parent problem”
and different solutions for this problem exists. An example of the old-parent
problem is illustrated in Figure 8.

5.1 Frederickson’s version

A small difference between Frederickson’s version and the versions presented by
Tel and in this paper is that Frederickson initiates the set of children of a node u
(Childu) to each of its neighbors (Neighu). During the exploration stage, nodes
are removed from this set when it turns out that they are not children of u. In
the other versions, Childu is initiated empty, and nodes are added when they
are indeed children of u.

To solve the old-parent problem, Frederickson’s version uses an extra 〈negative〉
message type to indicate a parent-switch. The 〈reverse〉 messages are only used
as an echo mechanism and do not require a variable.

After studying Frederickson’s version, we conclude the following:

• The algorithm works for non-FIFO channels, but this is not stated any-
where.

After testing different “delayed message situations” like the ones shown in Sec-
tion 5.4, it can be concluded that the algorithm supports non-FIFO channels.
This is due to the fact that the Frederickson’s Advanced Algorithm uses a level-
variable in each 〈negative〉 message.

• The algorithm produces a slight message overhead when a parent-switch
occurs.

10

As will be proposed in Section 5.3, it is enough to send an 〈explore〉 message
when a parent-switch occurs. The 〈negative〉 messages introduced by Freder-
ickson are thus superfluous.

• The algorithm is not fully operating in lockstep.

When a parent switch occurs, the front nodes do not wait until all information
about the tree is updated before reporting back to the initiator. When non-
FIFO channels are used, the algorithm may terminate while the BFS tree is
incorrect, i.e. two nodes may think they are both the parent of one other node.
However, since each node knows which node is its parent, nodes are able to
discard messages from their wrong parent. This is thus not a big issue.

We conclude now, that the provided algorithm of Frederickson is correct, but
it has still some drawbacks. The provided new version is supposed to overcome
these drawbacks.

5.2 Tel’s version

After studying Tel’s version of the algorithm, we conclude that the description
is incomplete. The description in Tel’s book is too short and lacks a solution
for the old-parent problem: it does not say what to do when a parent-switch
occurred and the algorithm could end up with multiples nodes having the same
child.

Tel [2006] suggested a solution: when a node receives a 〈forward〉 from a
node other than its parent, it sends a 〈no-child〉 message in return. Receivers
of a 〈no-child〉 message remove the sender of such a message from its list
of children. Since the last round of the algorithm will only send 〈forward〉
messages, this would always result in the desired BFS tree and the suggested
solution is thus correct.

Van Moolenbroek [2006] suggested another solution: a node which suffers
from a parent-switch sends its 〈explore〉 messages also to its former parent.
When the former parent receives this message, it knows that the sender is not
its child anymore. This is the solution we present below in further detail.

Besides the lack of a solution for the old-parent problem, it is stated in
Tel [2006] that the described algorithm is only working for non-FIFO channels.
Although it turns out that the suggested solution implies that the algorithm is
also correct for non-FIFO channels, there are no references that show this.

As can be concluded now, Tel’s version has some drawbacks. The revisited
version will overcome these drawbacks.

5.3 Detailed description

Before the detailed description of the Advanced Algorithm is provided, first
consider the next important differences compared to the previous versions:

1. No use of 〈negative〉 or 〈no-child〉 messages.
2. Elegant solution for the old-parent problem.
3. Suitable for networks using non-FIFO channels.

Some parts of the detailed description might be similar or the same as in the
Simple Algorithm, but they will be restated here for the sake of completeness.

11

Algorithm 5 Advanced Algorithm – Initialization

var levelu : integer init ∞
levelu[n] : integer init ∞ for each n ∈ Neighu

parentu : process init udef
Childu : process init ∅
k : integer init 0
` : integer init ?
bvalueu : boolean init false
expectedrepliesu[n] : integer init 0 for each n ∈ Neighu

sentreverseu : boolean init true

For the initiator i only, execute once:
begin

leveli ← 0
k ← 1
f o ra l l n ∈ Neighi do

Childu ← Childu ∪ {n}
send 〈explore, k, `〉 to n
expectedrepliesi[n]← 1

end

The algorithm is started by picking an initiator i and choosing a value for
`, followed by the initiator assigning itself level 0, after which the construction
of level 0 is complete. The next round is started by the initiator by sending
〈explore, 1, `〉 messages to each of its neighbors. This behavior is described in
detail in Algorithm 5.

As in the Simple Algorithm, each node u keeps track of some administration:
its own level in the BFS tree (levelu); the levels of its neighbor nodes (levelu[]);
its parent in the BFS tree (parentu); its set of children (Childu); the round the
algorithm is in (k, only relevant for the initiator); the value for ` (`) and three
extra variables (bvalueu, expectedrepliesu[] and sentreverseu) to perform checks
in the algorithm. Note that in the following description two assumptions are
made:

• Each node of the network has knowledge about its neighbor nodes in the
set Neighu.

• Each node of the network has knowledge about the decided value for `.

The last assumption could be removed by adjusting the algorithm a bit: let the
initiator calculate the best value for ` and send it at round k > 2 within each
〈forward, f〉 message.

We now describe the algorithm by explaining what happens when a message
from node v of type m arrives at node u. The events that can occur are:

1. Node u receives 〈forward, f〉 from node v.
2. Node u receives 〈explore, f,m〉 from node v.
3. Node u receives 〈reverse, b〉 from node v.

These events are now discussed in detail.

12

1. Node u receives 〈forward, f〉 from node v.

Algorithm 6 Advanced Algorithm – Handle 〈forward〉 messages

1 For each process u, upon receipt of 〈forward, f〉 from v:
2 begin
3 bvalueu ← false
4 ∀n ∈ Neighu : expectedrepliesu[n]← 0
5 i f levelu < f then
6 f o ra l l c ∈ Childu do
7 send 〈forward, f〉 to c
8 expectedrepliesu[c]← 1
9 i f levelu = f then

10 f o ra l l n ∈ Neighu ∧ levelu[n] 6= f − 1 do
11 send 〈explore, f + 1, `〉 to n
12 expectedrepliesu[n]← 1
13 end

〈forward, f〉messages are used to tell the front nodes they must send 〈explore, f, `〉
messages. The forward procedure is pretty straightforward: if a node u at
levelu < f receives a 〈forward, f〉 message, the message is forwarded to each
child and u sets the number of expected replies to 1 for each child [Algorithm
6, line 5-8].
If levelu = f , u sends 〈explore, f, `〉 messages to its neighbors not already known
to be at level f − 1. In this case also, the number of expected replies is set to 1
for each neighbor [Algorithm 6, line 9-12].
After sending all 〈forward, f〉 or 〈explore, f, `〉 messages, u waits for replies to
those messages. When all replies arrived, u can report back to its parent (see
event 3).

2. Node u receives 〈explore, f,m〉 from node v.

〈explore, f,m〉 messages with m > 1 and levelu > f are forwarded to neighbors
of u. If the network is suitable, this decreases the number of messages sent and
thus decreases the worst-case message complexity of the BFS algorithm (see
Section 5.5).
For administration reasons, u first stores at what level its neighbors are in
the BFS tree. The algorithm ignores delayed 〈explore, f,m〉 messages here
[Algorithm 7, line 3-4].
When u receives an 〈explore, f,m〉 message with levelu > f , u found a (better)
path to the initiator. u must now update some administration: set bvalue to
true, to indicate that — when all replies are received — 〈reverse, true〉 must
be sent to parentu; change parentu to v; adjust levelu to the new level in the
tree and reset the list of children Childu. Besides this administration update, u
checks whether it already sent a 〈reverse, b〉 message to its former parent if it
had one. If u did not sent a 〈reverse, b〉 yet, this is done now by u sending a
〈reverse, false〉 message to the former parent. This technique causes old explore
rounds to be terminated quickly [Algorithm 7, line 5-12].
When a (better) path was found and if m > 1, u sends 〈explore, f + 1, m −

13

Algorithm 7 Advanced Algorithm – Handle 〈explore〉 messages

1 For each process u, upon receipt of 〈explore, f,m〉 from v:
2 begin
3 i f levelu[v] 6= f − 1 then
4 levelu[v]← f − 1
5 i f levelu > f then
6 bvalueu ← true
7 i f not sendreverseu

8 send 〈reverse, false〉 to parentu
9 sendreverseu ← true

10 parentu ← v
11 levelu ← f
12 Childu ← ∅
13 i f m > 1
14 sendreverseu ← false
15 f o ra l l n ∈ Neighu ∧ n 6= parentu do
16 send 〈explore, f + 1, m− 1〉 to n
17 expectedrepliesu[n]← expectedrepliesu[n] + 1
18 else
19 send 〈reverse, true〉 to v
20 else i f (levelu = f) ∨ (levelu = f − 1) then
21 Childu ← Childu \ {v}
22 send 〈reverse, false〉 to v
23 else i f levelu < f − 1 then
24 send 〈reverse, false〉 to v
25 end

1〉 messages to each of its neighbors except to its parent. The counter array
expectedrepliesu is hereby increased for each node, to make sure that all replies
will be received before reporting back to the parent [Algorithm 7, line 13-17].
When m = 1, u sends a 〈reverse, false〉 message back, indicating v will not
becomes u’s parent [Algorithm 7, line 18-19].
Note that when u received an 〈explore, f,m〉 message, but already had another
parent x, m must be greater than 1. This means that when u already sent a
〈reverse, true〉 to its former parent x, u will sent an 〈explore, f + 1, m− 1〉 to
x as well:

Conjecture 1. When a node u in round k issues a parent change from x to v,
it is certain that eventually, but still in round k, an 〈explore〉 is sent to x.

When the former parent x receives the 〈explore, f ′, m′〉 message, it knows that
u found another parent. Two situations can be distinguished now:

• levelx > f . Now u becomes the parent of x and the 〈explore, f ′, m′〉
message is interpreted as described above. Note that it is thus necessary
to reset Childx in such a situation.

• levelx = f or levelx = f − 1. This means that u found a shorter path to
the initiator, but x will not become u’s child. Node x simply deletes u

14

from its list of children and replies with a 〈reverse, false〉 [Algorithm 7,
line 20-22].

When a node y which does not have any relation with u whatsoever, receives an
〈explore, f,m〉 message whereby levely = f or levely = f − 1, those statements
do not change anything about y’s state.
Using the above technique, it could be the case that inside a wave of 〈explore〉
and 〈reverse〉 messages, nodes are experiencing parent switches. However,
before the front nodes sent their reports back to the initiator, no malicious
parent-child relationships well be left. This is due to Conjuncture 1 and to the
fact that each node waits until it received a reply to all sent 〈explore, f,m〉
messages. This shows that the old-parent problem is solved.
Finally, if u received an 〈explore, f,m〉message with levelu = f−1 〈reverse, false〉
is replied since no better path was found [Algorithm 7, line 23-24].

3. Node u receives 〈reverse, b〉 from node v.

Algorithm 8 Advanced Algorithm – Handle 〈reverse〉 messages

1 For each process u, upon receipt of 〈reverse, b〉 from v:
2 begin
3 expectedrepliesu[v]← expectedrepliesu[v]− 1
4 i f levelu[v] ≤ levelu then
5 b← false
6 i f b = true then
7 Childu ← Childu ∪ {v}
8 bvalueu ← true
9 i f ∀i ∈ expectedrepliesu : expectedrepliesu[i] = 0 then

10 i f parentu 6= udef then
11 send 〈reverse, bvalueu〉 to parentu
12 sendreverseu ← false
13 else i f bvalueu = true then
14 k ← k + 1
15 f o ra l l c ∈ Childu do
16 send 〈forward, k〉 to c
17 expectedrepliesu[c]← 1
18 else
19 terminate
20 end

Processing a 〈reverse, b〉 message is rather simple. The process is very similar
to the one given in Algorithm 4, except that delayed 〈reverse, b〉 messages
must be detected. When a delayed 〈reverse, b〉 is found, it is interpreted as a
〈reverse, false〉 message [Algorithm 8, line 4-5].

5.4 Discussion

As stated in Section 5.3, we added the next three improvements to the Advanced
Algorithm:

15

1. No use of 〈negative〉 or 〈no-child〉 messages.
2. Elegant solution for the old-parent problem.
3. Suitable for networks using non-FIFO channels.

As can be adopted from the detailed description, the first improvement does
not require further explanation.

The working of the second improvement is also explained in the detailed
description. The main reason for stating that the new solution for the old-
parent problem is more elegant than Frederickson’s one is that in this solution
the BFS tree is correct at the moment that the front nodes start sending their
reports back to the initiator. This is not necessarily the case in Frederickson’s
version, since nodes in that version do not wait until all 〈negative〉 messages
are processed, because they do not have knowledge about these messages being
sent.

It is hard to claim that the third improvement is correct. In this subsection,
we now provide a list of examples that strike out the different possible situations
that may occur when a message is delayed. Observe that only the next two
situations are relevant to investigate:

• A delayed 〈explore〉 message arrives.
• A delayed 〈reverse〉 message arrives.

A 〈forward〉 message cannot be delayed, since there is a synchronization step
between each wave of 〈forward〉 messages.

Although it should be enough to investigate only above two situations, we
present some more examples to give a better idea of how the algorithm functions
in a non-FIFO environment.

Note that in the following figures, the numbers before a message represent
the order of sending. A gray, dotted line represents a delayed message.

• An 〈explore, f,m〉 message is overtaken by an 〈explore, f ′, m′〉 message
(figure 2).

Figure 2: 〈explore, 7, 3〉 overtaken by 〈explore, 6, 4〉

Since u sends an 〈explore, f ′, m′〉 message only if its level is decreased, the
value of f in the delayed 〈explore, f,m〉 message will always be greater than
f ′. It is thus not necessary to adjust the algorithm for this situation, since v
will ignore any 〈explore, f,m〉 message where f < levelv.
In this particular situation, v will send two 〈reverse, b〉 messages, one of them
being 〈reverse, true〉, which will be interpreted by u in such a way that v
becomes u’s child.

• An 〈explore, f,m〉message is overtaken by a 〈reverse, b〉message (Figure
3).

16

Figure 3: 〈explore, 7, 3〉 overtaken by 〈reverse, true〉

This case is similar to the previous one. When the value f from the delayed
〈explore, f,m〉message is greater than levelv, v will send back a 〈reverse, false〉.
When f < levelv, v understands that u must becomes its parent and replies with
a 〈reverse, true〉. This type of message delay does thus not change the operation
of the algorithm.

• A 〈reverse, b〉message is overtaken by an 〈explore, f,m〉message (Figure
4).

Figure 4: 〈reverse, true〉 overtaken by 〈explore, 6, 4〉

This case is only interesting when the value b from the delayed 〈reverse, b〉
message is true, since 〈reverse, false〉 messages do not affect the state of the
receiver (i.e. its list of children).
When a 〈reverse, true〉message from v to u is delayed and meanwhile u becomes
v’s child, u has to ignore this message. This is done by u by checking what
v’s level is: when levelv ≤ levelu — which u only knows when it received an
〈explore〉 message from v — u interprets the received 〈reverse, true〉 message
as a 〈reverse, false〉 message.

• A 〈reverse, true〉 message is overtaken by a 〈reverse, false〉 message (Fig-
ure 5).

This is in fact the same situation as the previous one. When a 〈reverse, true〉
message arrives at u, a check is performed to test whether this message might
be delayed.
In the situation described in Figure 5, when the delayed 〈reverse, true〉 ar-
rives at u, u will mistakenly assume that v is its child, but eventually, the
〈explore, 6, 4〉 message will tell u that v found another parent and that u thus
must remove v from its list of children.

• A 〈reverse, false〉 message is overtaken by a 〈reverse, true〉 message (Fig-
ure 6).

17

Figure 5: 〈reverse, true〉 overtaken by 〈reverse, false〉

Figure 6: 〈reverse, false〉 overtaken by 〈reverse, true〉

This is the opposite situation as the previous one. It is rather unimportant since
〈reverse, false〉 messages do not change anything about the receivers state (i.e.
its list of children).

We now conclude that the above three improvements of Frederickson’s BFS
algorithm are true and correct.

5.5 Complexity Analysis

Since the different versions of the Advanced Algorithm rely on the same concept,
the worst-case message and time complexity are the same for each different
version.
The construction of the BFS tree uses at most d |V |` e exploration rounds. In
each round, an edge of the BFS tree carries at most one 〈forward〉 and replying
〈reverse〉 message. In total, each edge carries at most ` 〈explore〉 messages
and ` replying 〈reverse〉 messages. The worst-case message complexity is thus
O(|V |

2

` + `|E|). As levels f + 1 through f + ` are computed in O(f + `) time

units, the worst-case time complexity is O(|V |
2

`).

By solving the algebraic equation |V |2
` = `|V |, the best value for ` can be

obtained, which is |V |√
E

. Filling this value for ` in the worst-case message and
time complexity formulas, they become the same:

O(|V |
√
|E|)

So for sparse graphs (i.e. graphs with only a few edges), the Advanced Algo-
rithm has a better worst-case message complexity than the Simple Algorithm.
Note however, that to achieve this, the algorithm needs to know |V | and |E| in
advance. If |V | and |E| are not known beforehand, extra messages are required.

18

6 Conclusions

We extended the existing notations of Frederickson’s BFS algorithm in three
ways. First, we showed that the revisited version improves the functionality of
the algorithm for two reasons: the algorithm is now works in lockstep; and the
use of 〈explore〉 messages instead of 〈negative〉 messages gives the algorithm
more transparency. Second, we showed that the algorithm operates correctly in
a non-FIFO environment, while in previous notations, it was always assumed
that FIFO channels were used. Third, we provided pseudocode along with the
description of the algorithm to give the programmer a fundamental of how to
implement the algorithm.

It must be stated however that we did not provide a formal proof of the
correctness of the algorithm. This may be done in the future when the algorithm
is researched in more detail. Also, although we provided a better manner to
use Frederickson’s BFS algorithm, the worst-case message complexity of the
algorithm remained the same.

It must also be stated that more research is possible on Frederickson’s orig-
inal paper. Since we redefine the BFS algorithm that Frederickson used for
constructing the all-pairs shortest-path algorithm, this last algorithm may re-
quire some updating as well. Also, as we concluded in Section 3, more research
is necessary on Zhu and Cheung [1987] to determine whether this paper may be
regarderd superfluous.

References

B. Awerbuch. Distributed shortest path algorithms. In Proceedings on 21st
annual ACM Symposium on Theory of Computing (STOC), pages 490–500,
1989.

B. Awerbuch and R. G. Gallager. Distributed BFS algorithms. In Proceedings
on Foundations of Computation Theory, pages 250–256, 1985.

B. Awerbuch and R. G. Gallager. A new distributed algorithm to find breadth
first search trees. IEEE Transaction on Information Theory, IT-33(3):315–
322, 1987.

B. Awerbuch, A. V. Goldberg, M. Luby, and S. A. Plotkin. Network decompo-
sition and locality in distributed computation. In Proceedings on 30th IEEE
Symposium on Foundations of Computer Science (FOCS), pages 364–369,
1989.

M. Bratislav and M. Miroslaw. Adaptation of breadth first search algorithm for
cut-edge detection in wireless multihop networks. In Proceedings of the 10th
ACM-IEEE International Symposium on Modeling, Analysis and Simulation
of Wireless and Mobile Systems, pages 377–386, 2007.

K. M. Chandy and J. Misra. Distributed computation on graphs: Shortest path
algorithms. Communications of the ACM, 25(11):833–838, 1982.

T.-Y. Cheung. Graph traversal techniques and the maximum flow problem in
distributed computation. IEEE Transactions on Software Engineering, SE-9
(4):504–512, 1983.

19

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms, chapter 26.4. McGrauw-Hill/MIT Press, 1990.

G. N. Frederickson. A single source shortest path algorithm for a planar dis-
tributed network. In K. Melhorn, editor, Proceedings on STACS 85 2nd
annual symposium on theoretical aspects of computer science, volume 182
of Lecture Notes in Computer Science, pages 143–150, Saarbrücken, 1985.
Springer-Verlag.

S. Makki. Efficient distributed breadth-first search algorithm. Computer Com-
munications, 19(8):628–636, 1996.

G. Tel. Introduction to distributed algorithms, chapter 12.4. Asynchronous BFS
Algorithms, pages 414–420. Cambridge University Press, 2000.

G. Tel. Personal communication. March 2006.

S. Toueg. An all-pairs shortest-path distributed algorithm. RC-8397, IBM T.
J. Watson Research Center, 1980.

D. Van Moolenbroek. Personal communication. March 2006.

A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hendrickson, and
U. Catalyurek. A scalable distributed parallel breadth-first search algorithm
on bluegene/l. In Proceedings of the 2005 ACM/IEEE conference on Super-
computing, page 25, 2005.

Y. Zhu and T.-Y. Cheung. A new distributed breadth-first-search algorithm.
Information Processing Letters, 25(5):329–333, 1987.

20

A Example: Simple Algorithm

(a) forward messages (b) explore messages

(c) reverse messages (d) reverse messages

Figure 7: Example of the Simple Algorithm

21

B Example: Old-parent problem

(a) r sends 〈explore〉 messages
to a and b.

(b) b accepts r as its parent
and forwards the 〈explore〉
message to a. The message
through r − a is very slow.

(c) a accepts b as its parent
and replies to b.

(d) b reports back to r and as-
sumes a is its child. However,
the 〈explore〉 from r to a ar-
rived and a now knows a better
route to r. b should somehow be
informed about the fact that a
has a better parent now. This
situation is called the old-parent
problem.

Figure 8: Example of the old-parent problem

22

