
ANDRUBIS - 1,000,000 Apps Later:
A View on Current Android Malware Behaviors

Martina Lindorfer*, Matthias Neugschwandtner*, Lukas Weichselbaum*,
Yanick Fratantonio+,Victor van der Veen†, Christian Platzer*

*Secure Systems Lab, Vienna University of Technology, {mlindorfer,mneug,lweichselbaum,cplatzer@iseclab.org}
+Computer Security Lab, University of California, Santa Barbara, yanick@cs.ucsb.edu

†The Network Institute, VU University Amsterdam, v.vander.veen@vu.nl

Abstract—Android is the most popular smartphone operating
system with a market share of 80%, but as a consequence,
also the platform most targeted by malware. To deal with
the increasing number of malicious Android apps in the wild,
malware analysts typically rely on analysis tools to extract
characteristic information about an app in an automated fashion.
While the importance of such tools has been addressed by the
research community, the resulting prototypes remain limited in
terms of analysis capabilities and availability.

In this paper we present ANDRUBIS, a fully automated,
publicly available and comprehensive analysis system for
Android apps. ANDRUBIS combines static analysis with dynamic
analysis on both Dalvik VM and system level, as well as
several stimulation techniques to increase code coverage. With
ANDRUBIS, we collected a dataset of over 1,000,000 Android apps,
including 40% malicious apps. This dataset allows us to discuss
trends in malware behavior observed from apps dating back as
far as 2010, as well as to present insights gained from operating
ANDRUBIS as a publicly available service for the past two years.

I. INTRODUCTION
Android is undoubtedly the most popular operating system
for smartphones and tablets with a market share of almost
80% [38]. Its widespread distribution and wealth of application
(app) distribution channels besides the official Google Play
Store, however, also make it the undisputed market leader when
it comes to mobile malware: according to a recent estimate, as
many as 97% of mobile malware families target Android [32].
Estimations by anti-virus (AV) vendors as to the number of
Android malware in the wild vary widely. McAfee reports
about 68,000 distinct malicious Android apps [50] and Sophos
collected a total of 650,000 unique Android malware samples to
date, with 2,000 new samples being discovered every day [59].

Google reacted to the growing interest of miscreants in
Android by introducing Bouncer [44], a service that transparently
checks applications submitted to the Google Play Store for
malware. Google reported that this service led to a decrease
of the share of malware in the Play Store by nearly 40% since
its deployment in February 2012. However, a common practice
among malware authors is repackaging popular apps with
malicious code and publishing them in alternative app markets
that do not employ effective security measures. In fact, in line
with findings from F-Secure [32], we found alternative markets
hosting up to 5-8% malicious apps [41].

Consequently, a significant amount of research has
focused on analyzing and detecting Android malware, with
numerous tools and services being proposed and operated by
researchers [24,29,56,58,66] and security companies [8,10,16].
Automated and reliable solutions are required to deal with
the growing number of mobile malware samples. Analysis
capabilities and availability of proposed research prototypes,
however, remain limited. A recent study on state-of-the-art
Android malware analysis techniques showed that among the 18
analysis tools surveyed, many systems were not available online
or were no longer being maintained [52]. In an evaluation
on the susceptibility of Android dynamic analysis sandboxes

against evasion, Vidas et al. [64] only found three publicly
accessibly systems (including the one presented in this paper).

In order to provide a large-scale analysis solution to the
research community we propose ANDRUBIS, a hybrid Android
malware analysis sandbox that generates detailed analysis
reports of unknown Android apps based on features extracted
during static analysis and behavior observed through dynamic
analysis during runtime. Similar to the spirit of AndroTotal [47],
a service that allows researchers to scan Android apps with a
number of AV scanners, we operate ANDRUBIS as a publicly
available service and data collection tool that allows us to
collect and share a comprehensive and diverse dataset of both
Android malware and benign apps.

We built ANDRUBIS as an extension to the dynamic Windows
malware analysis sandbox ANUBIS [3,21]. ANUBIS has
collected a dataset of Windows malware samples that represent
a comprehensive and diverse mix of malware found in the wild
since 2007 [20]. ANDRUBIS itself has been online since June
2012 and has analyzed over 1,000,000 unique Android apps
so far. Based on AV labels collected from VirusTotal [15], we
estimate 40% of those apps are malware (not including adware).
We further assess the age of apps in our dataset and categorize
them by year starting in 2010 allowing us to identify trends in
Android malware behavior. Similar to the dataset of ANUBIS,
our dataset represents apps from a variety of sources, with apps
collected from crawls of the Google Play Store and alternative
markets, sample exchange with other researchers, torrents and
direct downloads, and anonymous user submissions.

The tight integration of our analysis with the existing ANUBIS
infrastructure for analyzing Windows malware provides two main
benefits: (a) we can take advantage of existing sample exchange
agreements as malware feeds often contain both Windows and
mobile samples, and (b) adapt existing analysis techniques for
the use with Android apps. For example, experiments applying
clustering [22] to Android apps yielded promising results and
showed that the feature set produced by ANDRUBIS is rich
enough to allow researchers to build various post-processing
methods upon [65]. This last aspect is of particular importance as
we envision ANDRUBIS to be integrated with other analysis tools
to foster sample exchange and provide deeper insights into An-
droid malware behavior. ANDRUBIS has already been integrated
with different tools, such as AndroTotal to provide an additional
analysis report to AV scanner results. Similarly, ANDRUBIS
provides a seed of malicious apps to AndRadar [41], which it
uses to scan the Google Play Store and 15 alternative markets and
that in turn allows us to collect valuable meta information for our
dataset. Besides shedding light on publishing habits of malicious
app authors we can gain insights on an app’s distribution across
markets and popularity according to user ratings and download
numbers. In the future, we also hope to gain insights into the
infection rates of user’s devices by analyzing which apps are
submitted through our mobile app interface from user’s phones.
Thereby we could verify reports of the small infection rates of
less than 0.3% reported in related work [40,46,62].



In summary, we make the following contributions:
• We introduce ANDRUBIS, a fully automated analysis system

that combines static and multi-layered dynamic approaches
to analyze unknown Android apps.

• We provide ANDRUBIS as a large-scale analysis service to the
research community, accepting public submissions at https:
//anubis.iseclab.org and through a mobile app [2].
• By collecting apps from a variety of sources we build a

comprehensive and diverse dataset of over 1,000,000 Android
apps, including over 400,000 malicious apps.

• We present insights gained from providing our service for the
past two years and we discuss trends in malware behavior
observed from apps dating back as far as 2010.

II. ANDRUBIS SYSTEM OVERVIEW
In this section we detail the building blocks of ANDRUBIS and
how they contribute to forming a complete picture of an app’s
characteristics. ANDRUBIS follows the hybrid analysis approach
and is based on both static and dynamic analysis complementing
and guiding each other: results of the static analysis are used
to perform more efficient dynamic analysis. Figure 1 shows
an overview of the individual components of ANDRUBIS and
how they relate to one another. Users can submit apps either
through our web interface, automated batch submission scripts,
or directly from their phone through a dedicated mobile app.
We then subject each app to the following three analysis stages:

1) Static Analysis. During this stage we extract information
from an app’s manifest and its bytecode.

2) Dynamic Analysis. This core stage executes the app in a
complete Android environment, and its actions are monitored
at both the Dalvik and the system level.

3) Auxiliary Analysis. We capture the network traffic from
outside the Android OS and perform a detailed network
protocol analysis during post-processing.

A. STATIC ANALYSIS
Android apps are packaged in Android Application Package
(APK) files, a ZIP archive based on the JAR file format. An
APK file contains an app’s bytecode stored in Dalvik Executable
(DEX) format, resources, such as UI layouts, as well a manifest
file (AndroidManifest.xml). The manifest is mandatory and
without its information an app cannot be installed or executed.
Thus, as a first step, we unpack the archive and parse meta
information from the manifest, such as requested permissions,
services, broadcast receivers, activities, package name, and
SDK version. In addition we examine the actual bytecode to
extract a complete list of available Java objects and methods.

We use the information gathered during static analysis to assist
in automating the dynamic analysis, mainly during the stimu-
lation of an app’s components. Furthermore, an app requesting
dangerous permissions can be indicative of malicious behavior.
Therefore, we extract the permissions that are requested as well
as the permissions that are actually used in the app’s bytecode
to later compare them to permissions used during runtime.

B. DYNAMIC ANALYSIS
Being designed for smartphones and tablets, Android is predom-
inantly deployed on ARM-based devices. Since the underlying
architecture should be of no difference to the apps, we decided to
build our sandbox for the ARM platform, the typical environment
for Android, and chose a QEMU-based emulation environment
capable of running arbitrary Android OS versions. Since Android
apps are based on Java, we instrument the underlying virtual
machine (VM), called the Dalvik VM, and record activities
happening within this environment. This allows us to monitor

APK File
Dynamic Analysis

Emulator
Android OS
Dalvik VM

Analysis Report

Static Analysis

Auxiliary
Analysis

Network 
Protocols …

Fig. 1: System overview of ANDRUBIS.

the file system and network, as well as phone events, such as
outgoing SMS messages and phone calls, and the loading of addi-
tional DEX or native code during runtime. For a comprehensive
analysis, however, these capabilities are not sufficient. Therefore,
we implemented the following additional analysis facilities:
• Stimulation. Due to the event-driven nature of Android,

comprehensive input stimulation is invaluable for triggering
interesting behavior from the app under analysis.
• Taint Tracking. To track privacy sensitive information

ANDRUBIS uses taint tracking at the Dalvik level [30], which
enables us to detect the leakage of sensitive information.
• Method Tracing. We record invoked Java methods, their

parameters, and their return values. Combined with our
static analysis, we can use method traces to measure the
code covered during an analysis run, e.g., for evaluating and
improving our stimulation engine.
• System-Level Analysis. To provide means for analysis

beyond the scope of the Dalvik VM, we implemented an
introspection-based solution at the emulator level. This
enables us to monitor the system from outside the Android OS
and to track system calls of native libraries and root exploits.

The output produced by the method tracer and the system-level
analysis is not displayed in the public ANDRUBIS analysis
report. As these tasks are quite resource-intensive and the
log files are quite large, we only perform them on a subset
of samples and provide them on an on-demand basis for
researchers and analysts rather than ordinary users.

The remainder of the sandboxing system (network setup and
traffic capturing, host environment, database, etc.) is comparable
to conservative analysis systems. To mitigate potentially harmful
effects of our analysis environment to the outside world while
allowing apps under analysis to use the network, we took
precautions to prevent apps from executing DoS attacks, sending
spam e-mails or propagating themselves over the network. This
part is based on our experience with Windows malware analysis
and proved to be effective with ANUBIS in the past [21].

1) Stimulation: The purpose of stimulation is to exhaustively
explore the functionality of an app. One major drawback of
dynamic analysis in general is the fact that only a few of all
possible execution paths are traversed within one analysis run.
Furthermore, Android apps can have multiple entry points
besides the main activity, which is displayed to the user when
an app is launched, so that apps can react to system events or
interact with each other. Luckily, since the app’s manifest lists the
various components (activities, services, and broadcast receivers),
we can stimulate them individually. Additionally, we can initiate
common events that malicious apps are likely to react to.

Our stimulation approach includes the following sequence of
events: after the initialization of the emulator, ANDRUBIS installs
the app under analysis and starts the main activity. At this point,



all predefined entry points are known from static analysis. During
runtime ANDRUBIS keeps track of dynamically registered entry
points, enabling it to perform the following stimulation events:
Activities. An activity provides a screen to interact with and
defines the interaction sequences and UI layout presented to the
user. Activities have to be registered in the manifest and cannot
be added programmatically. Therefore, by parsing the manifest,
ANDRUBIS has full knowledge about an app’s activities and
invokes each activity separately, effectively iterating all existing
dialogs within an app.
Services. Background processes on the Android platform are
usually implemented as services. In contrast to activities, they
come without a graphical component and are designed to provide
background functionality for an app. Naturally, they are also of
interest to malware authors, as they can be used to implement
communication with command and control (C&C) infrastructures
of botnets, leak personal information, or forward intercepted text
messages to an adversary. Again, all services used by an app
must be listed in the manifest. Their existence, however, does
not automatically mean the service is started: to save battery life
and preserve memory, services have to be started on demand,
with a lifetime defined by the programmer. For ANDRUBIS we
utilize a customized Activity Manager to iterate and start all
listed services of an app automatically after it has been installed.
Broadcast Receivers. Other possible entry points for Android
apps are broadcast receivers. Broadcast receivers are basically
event handlers used to receive events from the system or
other apps on the Android platform. For example, a broadcast
receiver for the BOOT_COMPLETED event can be registered to
start an app after the phone has finished its boot sequence
or a broadcast receiver for the SMS_RECEIVED event can be
registered to intercept incoming SMS messages.

Just like services and activities, broadcast receivers can be
registered in the manifest. However, for broadcast receivers
this is not mandatory. In order to provide the possibility to
react to certain events, or to provide communication with
other apps dynamically, they can also be registered and
deregistered at runtime. Therefore, we intercept the calls
to registerReceiver() to obtain a list of dynamically
registered event handlers that we can stimulate. Similar to the
previous stimuli, ANDRUBIS uses the Activity Manager to invoke
all statically registered broadcast receivers found in the manifest
as well as the ones that have been dynamically registered.
Common Events. A far superior method compared to directly
stimulating broadcast receivers with a targeted event is to
emulate the events that apps might react to and especially
malicious apps are likely to be interested in. Thus, we broadcast
events such as boot completion, incoming SMS and phone
calls, changes in the GPS lock, and changes in the WiFi and
cellular connectivity. In contrast to directed stimuli, these events
occur at the system level and thus also trigger receivers of the
Android OS itself. That, in turn, avoids causing inconsistent
states the OS would have to recover from when only invoking
the event handler registered by an app.
Application Exerciser Monkey. The remaining elements
that need to be stimulated are actions based on user input
(button clicks, file upload, text input, etc.). For this purpose,
we use the Application Exerciser Monkey, which is part of the
Android SDK and generates semi-random user input. Originally
designed for stress-testing Android apps, it randomly creates a
stream of user interaction sequences that can be restricted to a
single package name. While the triggered interaction sequences
include any number of clicks, touches, and gestures, the monkey
specifically tries to hit buttons. As some use cases might

require repeatable analysis runs without any random behavior
introduced by the monkey, we optionally provide a fixed seed
in order to always trigger the same interaction sequences.

2) Taint Tracking: Data tainting is a double-edged sword
when it comes to malware analysis. On one hand, it is the
perfect tool to keep track of interesting data; on the other hand,
it can be tricked quite easily if a malware author is aware of
this mechanism within an analysis environment [25]. By leaking
data through implicit flows, for instance, it would be possible to
circumvent tainting. Furthermore, enabling data tainting always
comes at the price of additional overhead to produce and
track taint labels. Still, the possibility to track explicit flows of
sensitive data sources, such as contacts, phone-specific identifiers,
and the location, to the network is a valuable property of a
dynamic analysis system. ANDRUBIS leverages TaintDroid [30]
to track such sensitive information across application borders in
the Android system. The introduced overhead in processing time
of approximately 15% [30] is also acceptable for our purposes.
As a result, ANDRUBIS can log tainted information as it leaves
the system through three sinks: network, SMS, and files on disk.

3) Method Tracing: For an extensive analysis of Java-based
operations, we extended the existing Dalvik VM profiler
capabilities to incorporate a detailed method tracer. For a
given app we log the executed Java methods on a per-thread
basis. The method trace contains method names and their
corresponding classes, the object’s this value (if any), all
provided parameters and their types, return values, constructors,
exceptions and the current call depth. For non-primitive types,
the tracer looks up and executes the object’s toString()
method, which is then used to represent the object.

Together with the output gained from system-level analysis
(described in the next section), the fine-grained method traces
can assist reverse engineering efforts, serve as input to machine
learning algorithms, or they can be used to create behavioral
signatures. Furthermore, by mapping the method trace to
permissions utilizing a permission mapping, such as the ones
provided by PScout [18] or Stowaway [34] we can determine
the permissions an app actually used during runtime.

Our main incentive to integrate method tracing, however, is
to measure the code covered during the individual phases of the
stimulation engine. To this end, we first compile a list of executed
method signatures. We then map this list against the list of func-
tions extracted during static analysis based on their Java method
signature excluding parameter types and modifiers, i.e., on
their <package>.<subpackage>.<class>.<method> rep-
resentation. Finally, we compute the code covered as the overall
percentage of functions that were called during the dynamic anal-
ysis. However, apps may contain numerous functions that, during
a normal execution, will never be invoked, such as localization
and in-app settings or large portions of unused code from third-
party libraries. Thus, for a less conservative and more realistic
code coverage computation we can whitelist known third-party
APIs or limit the computation to the main app package’s code.

4) System-Level Analysis: In addition to monitoring the
Dalvik VM, and in contrast to most related work on Android
malware, ANDRUBIS also tracks native code execution. By
default, Android apps are Java programs, being distributed
as a DEX file within an APK file. Hence, the default way of
programming for the Android platform and executing Android
apps is by running Dalvik bytecode within the Dalvik VM.
However, Android apps are not limited to Dalvik bytecode and
can also execute system-level code by loading native libraries
via the Java Native Interface (JNI). While this functionality
is mainly intended for performance-critical use cases, such as
displaying 3D graphics, apps are not restricted to loading the



native libraries shipped with the Android OS; instead they can
also ship and load their own native libraries and, in turn, execute
arbitrary system-level code. Naturally, the execution of this code
takes place outside of the Dalvik VM and, thus, the behavior
of this code is invisible to the analysis at Dalvik VM level.
For malicious apps the use of native code is attractive as the
possibilities to perform malicious activities, such as the usage
of exploits to gain root privileges, are far greater than within the
Dalvik VM – making system-level analysis indispensable for
drawing a complete picture of an apps’s behavior. In addition,
Google recently introduced the new Android Runtime (ART) [37]
that compiles Dalvik bytecode to native code at installation
time. With the replacement of Dalvik with ART as the default
runtime in upcoming Android OS releases [61], the capability
to perform system-level analysis will gain further importance.

Being based on Linux, there are a couple of ways to
implement system-level instrumentation in Android, such as
using LD_PRELOAD, ptrace or a loadable kernel module. We
decided to use the most transparent and non-intrusive way –
virtual machine introspection (VMI). With VMI our analysis
code is placed outside of the scope of the running Android OS,
right in the emulator’s codebase, and tracks the complete list of
system calls performed by the emulator as a whole, including
the OS. To capture the system-level behavior of the app under
analysis, we ultimately need to extract the system calls executed
by the library code that was loaded via JNI. To this end, we
intercept the Android dynamic linker’s actions in order to track
shared object function invocations. System call tracking bundled
with this information enables us to associate system calls with
invocations of certain functions of loaded libraries. Android
assigns a unique user ID (UID) to every app and runs the app as
that user in a separate process – allowing us to associate system
calls with apps based on the process UID. The result is a list of
native code events caused by just the specific app under analysis.

C. AUXILIARY ANALYSIS
Network traffic is one of the most essential parts
when establishing malware-detection metrics, with C&C
communication being of particular importance. According
to studies performed in production environments [36], more
than 98% of Windows malware samples established a TCP/IP
connection. Thus, in addition to tracking sensitive information to
network sinks via taint tracking, we also capture all the network
activity during analysis regardless of the performed action or the
app causing it. This is necessary since apps not requesting and
using the INTERNET permission themselves, can still use other
installed apps like the browser, to send data over the network.
Another way to transmit network data without requesting the
appropriate permissions is by exploiting the Android OS and
circumventing the permission system as a whole.

During post-processing we perform a detailed Network
Protocol Analysis that extracts high-level network protocol
features from the captured network traffic suitable for identifying
interesting samples. Currently, we focus on the well-known and
often used protocols DNS, HTTP, FTP, SMTP, and IRC.

III. ANDRUBIS AS A SERVICE
In this section we present insights gained from offering
ANDRUBIS as a publicly available service for the past two
years and the dataset of apps we collected along the way.

A. SUBMISSION STATISTICS
We base our analysis on a dataset collected over the span
of exactly two years, between June 12, 2012 and June 12,
2014. We distinguish between submissions (all analysis requests
ANDRUBIS received), tasks (submissions for which the analysis

TABLE I: Users categorized by their number of submissions
and proportion of all submissions.

Category # of Users % of All Submissions

Bulk (10,000+) 15 95.82%
Large (1,000-10,000) 13 2.47%
Medium (100-1,000) 34 0.59%
Small (10-100) 247 0.41%
Single (1-10) 7,966 0.72%

was performed), and samples (unique apps based on their MD5
file hash). Overall, ANDRUBIS received 1,778,997 unique submis-
sions. Since ANDRUBIS usually returns cached analysis reports
in case an app is submitted multiple times (unless a user requests
a re-analysis of a previous task), it performed analysis tasks
for 1,073,078 (around 60%) of submissions. In total ANDRUBIS
received and analyzed 1,034,999 (58.18%) unique samples.

To put the number of Android samples into perspective
we compare them to overall submissions to ANUBIS. During
our observation period ANUBIS received a total of over 22
million samples, Android apps thus amount to close to 5% of
overall samples. However, since the submission interface only
assigns submissions of ZIP archives containing classes.dex
and AndroidManifest.xml to ANDRUBIS, we only report
numbers on APK files and not submissions of related files such as
stand-alone DEX classes. A large number of samples comes from
malware feeds as part of exchange agreements. We receive feeds
with Android apps from nine sources, most of them submitting
both Windows executables and Android apps – with the exception
of AndroTotal almost exclusively submitting APK files. Other
malware feeds from security researchers and AV vendors contain
from as little as 1% to up to 37% Android apps. The largest
sample feed contributing more than five million samples in the
observation period contains around 10% Android submissions.

Figure 2 shows the weekly number of total submissions,
submissions through sample exchanges, i.e., semi-regular feeds
of samples, new samples and analyzed samples. Submissions
peaked in August 2012 and January 2013, when we received
bulk submissions from Google Play crawls and in July 2013
when one feed submitted a higher than usual amount of samples.
In November and December 2013 AndRadar [41] started
submitting a backlog of apps before switching to a regular feed
of apps. Besides a power outage in January 2014 ANDRUBIS
has been operating reliably and analyzed up to the current
maximum capacity of 3,500 new apps per day.

In order to estimate the number of different users using our
service, we distinguish them either by their username, or in case
of anonymous submissions, by their IP address. Users can register
for an account in order to gain special privileges, such as a higher
priority for their tasks or the ability to force the re-analysis of
an app. The account management is shared with ANUBIS, but
152 registered users submitted at least one Android app. With
anonymous submissions coming from 8,123 unique IP addresses
we estimate that 8,275 unique users from 130 different countries
are using ANDRUBIS. The majority of submissions come from
registered users, with 15 individual users amounting to over 95%
of total submissions, and only 38,905 (3.76%) of submissions
coming from anonymous sources. Table I categorizes users by
their number of submissions from single submitters with less
than 10 submission to “power users” with more than 10,000
submissions. The maximum amount of 557,559 submissions for a
single user stems from one of the aforementioned malware feeds.

Figure 3 shows the number of different sources, i.e., the
number of distinct users that submitted a particular app: around
70% of apps were submitted by only one user and only 1.5%
of apps were submitted by more than three distinct users. In



Fig. 2: Weekly number of total submissions, submissions through sample exchanges, new and analyzed samples.

Fig. 3: Number of unique users submitting an app and
percentage of goodware and malware submitted by N users.

general, malicious samples were submitted more frequently
than goodware apps (with the exception of the top two apps):
over 80% of apps submitted by more than five different users
belong to the malware category. The popular game Flappy Bird
was also the “most popular” app submitted to ANDRUBIS by
88 different users. The second most submitted app is the alpha
version of our mobile interface to ANDRUBIS, with which
users can submit apps directly from their phones (it is currently
available for download on the ANDRUBIS’s web interface).
However, the remaining most popular apps (and all other apps
submitted 26 times and more) are part of malware corpora, such
as Contagio [6] and the Android Malware Genome Project [72].

B. ANALYSIS RESULTS AND LIMITATIONS
Overall, ANDRUBIS successfully analyzed 91.67% of all apps.
For the remaining samples, 0.34% failed due to bugs in our
analysis environment and 7.99% of samples failed to install
in our sandbox due to various reasons, such as the APK file
being corrupt or the app exceeding the API level of the Android
OS version installed in our sandbox. ANDRUBIS currently runs
Android 2.3.4 Gingerbread and thus only supports apps with a
minimum required API level ≤ 10. We know that 0.78% of apps
require a newer OS version, and for 6.66% of samples we could
either not parse the manifest or they did not specify an API level.
However, this has no significant impact on malware analysis as
of now. Instead, it is mainly a concern for goodware, of which
2.11% (6,099) require a higher API level, while only 0.10%
(439) of malicious apps fail for this reason. Such a behavior
by malware authors is expected: their malicious apps require a
lower API level in order to maximize the potential user base for
their apps, and, in turn, their profit. This is also confirmed by
Figure 8 in the Appendix, which shows that malware authors are
much slower in adopting new API levels than goodware authors.

C. SCALABILITY
Currently, ANDRUBIS is capable of processing around 3,500
new apps per day, i.e., apps that have never been analyzed before

and for which no cached report is available. The analysis of an
app takes around 10 minutes, with 240 seconds analysis runtime
in the sandbox plus an additional 387.27 seconds on average for
pre- and post-processing. Pre-processing includes setting up the
emulator and loading the Android OS snapshot, installing the
app, parsing the manifest and performing static analysis on the
APK. Post-processing includes extracting protocol information
from the network traffic and preparing the final analysis report.

Judging from our experience running the Windows malware
analysis service ANUBIS and similar to Andlantis [23],
ANDRUBIS scales well by simply adding new workers to
handle the analysis of new samples should submissions increase.
However, already with the current throughput of over 100,000
apps per month, ANDRUBIS is capable of analyzing samples
at market scale. For example, Google Play, the largest app
store (by far), added, on average, 37,500 new apps per month
in the last year, with peaks of up to 85,000 new apps in
December [5]. When it comes to malware, Android still falls
far behind the plethora of Windows samples circulating in the
wild: Sophos estimates 2,000 new Android malware samples
are being discovered each day [59], a number ANDRUBIS can
handle in the current configuration and setup comfortably.

D. SAMPLE SOURCES
One limitation of a public web interface allowing anonymous
submissions is the lack of meta information associated with
submitted apps. Since the majority of apps are submitted by
registered users, however, we can associate them to sample
exchanges, part of our own crawling efforts, or the integration of
tools, such as AndRadar. Table II in the Appendix summarizes
the number of apps from each source, as well as the proportion
of benign and malicious apps (see the next section on how we
separated goodware from malware). The apps in our dataset
originate from the following eight sources:
Sample Exchange. These apps make up the majority of our
dataset and come from sample sharing with other researchers.
Most of the feeds are part of long-standing sample exchanges
that started with Windows samples, but now also include
Android samples, too.
Google Play. We initially crawled 100,000 apps from the
Google Play US Store during May and June 2012. Additionally,
since December 2013, we receive apps crawled from AndRadar
that match a seed of malicious apps and are located in the
Google Play Store. In April 2014, we started fetching the top
apps overall, top new apps and top apps per category (limited
to 500 entries each by Google Play) from the Google Play US
and AT Store on a daily basis.
Alternative Markets. These apps are crawled by AndRadar
from 15 alternative markets, including seven Chinese and one
Russian market. This dataset is biased towards malware since
AndRadar aims at locating malicious apps.



VirusTotal. We regularly download samples from VirusTotal.
However, this dataset not only contains malware, but also a
small percentage of samples labeled as adware as well as some
samples not detected by any AV scanner.
Malware Corpora. This is a collection of manually gathered
malware samples we encountered over time as well as samples
from vetted malware corpora, such as the Contagio Mobile
Malware Dump [6], the Android Malware Genome Project [72],
and Drebin [17]. However, besides the relatively small Contagio
set (470 samples) that is regularly updated, which, in turn,
makes comparison hard, available malware corpora are already
quite dated: the 1,200 samples (49 different families) from the
Android Malware Genome Project were collected from August
2010 to October 2011, the 5,560 apps (179 families, including
the Genome Project) from the Drebin dataset were collected
in the period of August 2010 to October 2012.
Torrents. We downloaded apps from isohunt.com,
thepiratebay.se, and torrentz.eu for which the
torrent had at least ten seeders. To avoid distribution of copyright-
protected content, our torrent client did not upload any data at all.
Direct Downloads. We downloaded a set of apps through
direct downloads from various one-click hosters, including
filestube.com and iload.to.
Unknown. These apps stem from anonymous user submissions
and thus we do not have any information where they originate
from.

E. COLLECTED DATASET
The dataset gathered from samples submitted to ANDRUBIS
allows us to perform a longitudinal analysis of Android app
features in general and features specific to benign apps and
malicious apps. First, however, we need to separate the dataset
into subsets. Since the primary goal of ANDRUBIS is to provide
researchers with a comprehensive static and dynamic analysis
report of an app, not to automatically identify apps as goodware
or malware, we have to rely on AV signatures as our ground truth:
Goodware. We classify apps as goodware if they do not match
any AV signature from VirusTotal’s AV scanners. Goodware
apps make up 27.90% of our dataset.
Malware. We classify apps as malware if they match at least t
AV signatures. We experimented with different settings for the
threshold t and settled on at least 5 AV labels, ignoring all AV
labels indicating adware. With thresholds t>5 a large portion
of apps exhibiting malicious behavior, such as exploiting the
Master Key vulnerabilities (see Section IV-A7), would have
been missed. Malware apps make up 41.15% of our dataset.
All. In addition to goodware and malware our complete dataset
contains 30.95% other apps that are detected by 1 to 5 AVs
or that are classified as adware.

Estimation of Release Date. In order to perform any kind of
longitudinal analysis on our dataset and categorize apps by the
year of their release, we need to estimate the age of each sample.
Besides this yearly division of our dataset we also would like
to have a more precise estimate to allow for a fine-grained
evaluation, such as the time it takes for us to receive and
analyze samples after they have been released. We estimate the
age of an app from four data points: (1) the last modification
date of the APK file (zip_modification_date), (2) the
release date of the SDK indicated by the minimum required
API level (sdk_release), (3) the date a sample was first
published in any of the markets monitored by AndRadar
(market_release), and (4) the date a sample was first
submitted to ANDRUBIS (first_seen).

For (1), the last modification date of the APK file, we parse
the timestamp for the archive member that was modified last,
usually the app’s certificate, from the ZIP central directory file
header. Naturally, this date can be tampered with, as evidenced
by 273 apps feigning a modification date in 1980, the first year
the ZIP file format supports for timestamps, further 9,703 before
the first Android version was released in 2008, as well as 86
apps dated in the future, up to the year 2107. For (2), we parse
the minimum required API level from an app’s manifest and
map it against the Android version history [1]. For (3), we have
information from AndRadar for 68,197 apps in our dataset, since
not all markets specify the date an app was uploaded and we do
not want the overall release date of an app but the date when
a specific version (based on the MD5 file hash) was released.

In general, we trust the modification dates extracted
from the ZIP header as we only encountered relatively few
outliers exhibiting unrealistic modification dates. However,
we sanitize the zip_modification_date by checking the
sdk_release as a lower bound for when the app could have
been released in case the ZIP timestamp was predated, and the
market_release as an upper bound when the app was first
seen in the wild in case the app was postdated. In the normal
case the app requests a specific API level after the corresponding
SDK was released and the app is built before it is released to
the public, e.g., an application market. In this case we estimate
the release date (apk_date) as the date the ZIP was created:

sdk_release<zip_modified<market_release
apk_date=zip_modified

For 10,000 apps (1.04%) the ZIP file was created before the
corresponding SDK was released. This could be either due
to the ZIP file header being tampered with or the app being
part of an alpha/beta test of an unreleased SDK. Since an app
cannot be installed on devices if it requires a higher API level
than the currently available Android OS version, we assign the
date of SDK release to the release date:

zip_modified<sdk_release
apk_date=sdk_release

In only six cases the market release date indicates that the app
was published before the requested SDK level was released. This
could be due to an error on the developers side, unintentionally re-
questing a higher API level than required. In this case we choose
the maximum of the SDK release and the ZIP creation date:

market_release<sdk_release
apk_date=max(sdk_release,zip_modified)

Around 5,000 apps (0.50%) were published in a market before
the ZIP was last modified. Since this means that the ZIP header
obviously has been tampered with, we set the release date to
the market release as the first date we saw the app in the wild:

market_release<zip_modified
apk_date=market_release

We now can use the apk_date to estimate the analysis delay,
the time it takes between an app being released and the app
being submitted to ANDRUBIS. Figure 4 shows the CDF of
the analysis delay for the first and second year of operation.
Within the first year we only saw 15% of samples within one
week of their release for both malware and goodware. In the
second year this number significantly increased to over 40%
for goodware apps, in part due to our crawling of the popular
new apps from the Play Store on a daily basis. In the first year
ANDRUBIS analyzed 60%-70% of all samples within the first
three months. This number increased for apps of all categories
to 80% in the second year. Finally, the number of apps analyzed
within six months of their release increased from 2012 to 2013
by 10 percentage points for apps of all categories, to close to
90% of goodware and 95% of malware samples.



1 Day
2 Days

3 Days
1 Week

2 Weeks

1 Month

3 Months

6 Months
1 Year

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 2012/ 2013 (All)
2013/ 2014 (All)
2012/ 2013 (GW)
2013/ 2014 (GW)
2012/ 2013 (MW)
2013/ 2014 (MW)

Fig. 4: CDF of time between APK creation and first submission
to ANDRUBIS in the first (June 2012 - June 2013) and second
year (June 2013 - June 2014) of operation.

Fig. 5: Number of all, goodware and malware apps in our
dataset per year. The share of successful analyses is highlighted
in a darker shade.

Finally, for categorizing our dataset by release year, we also
include the date ANDRUBIS first saw an app in the estimation and
assign min(apk_date,first_seen) as the final app release
date. This results in the dataset depicted in Figure 5, separated
by app release year and category (All, Malware, Goodware).
Android was released in September 2008, however, malware first
surfaced in 2010 [39] and apps released before 2010 amount to
less than 0.76% of all apps in our dataset, thus, we focus in our
following evaluation on apps released between 2010 and 2014.

IV. ANDROID MALWARE LANDSCAPE
We already used the dataset described in the previous section in
prior work for exploring WebView-related vulnerabilities [51].
Based on apps collected between July 2012 and March 2013
we determined that 30% of apps were vulnerable to web-based
attacks by exposing native Java objects via JavaScript.

In the following, we give a summary of apps’ static analysis
features and behavior during dynamic analysis and identify
trends for All, Goodware and Malware samples over the past
four years from 2010 to 2014. As our observations show,
dynamic analysis is increasingly able to capture behavior
otherwise missed by static analysis. This is in part due to the
increasing use of dynamic code loading amongst malicious and
benign apps and their use of obfuscation techniques and/or DRM
protection. Additionally, while 57.08% of malware samples
employ reflection with no significant change over the years,
use of reflection amongst all apps has increased significantly
from 43.87% in 2010 to 78.00% in 2014, and even more in
goodware (from 39.55% to 93.00%). Therefore, it is essential
for large-scale evaluations to include dynamic analysis systems.

A. OBSERVATIONS FROM STATIC ANALYSIS
While dynamic analysis is gaining importance in forming a
complete picture about an app’s functionality, for some features
evaluation of static features already provides valuable insights.
In this section we take a look at permission requests and their
usage according to static analysis, application names, developer
certificates, resources sharing between apps, registered broadcast
receivers, the use of third-party libraries and the exploitation
of Master Key vulnerabilities.

1) Requested Permissions: Android apps can define and
request arbitrary permissions: in fact, we observed almost 30,000
unique permissions being requested overall. Here, we focus on
permissions defined and safeguarded by the Android OS. In ad-
dition to parsing all requested permissions from the manifest, we
statically extract the usage of permissions from the app’s source.
While this approach ignores permissions that are requested, but
only used in code dynamically loaded at runtime, we could use
ANDRUBIS’s method tracer (Section II-B3), to determine the per-
mission usage during dynamic analysis in future experiments. For
now the dynamic extraction of used permissions is in an experi-
mental state and results are only available for a subset of samples.

We statically extract the usage of 143 permissions, covering
the most interesting and commonly requested permissions as
shown in Table III (in the Appendix). In line with previous
findings on permission usage amongst malware, malicious
samples generally request more permissions than goodware, but
use less of them: malicious apps request 12.99 (11.57 when only
looking at the subset of permissions we can statically extract)
permissions on average, but use only 5.31 of them, goodware
apps on the other hand request 5.85 (5.56) permissions on
average and use 4.50 of them. One explanation for this behavior
is that malware samples request more permissions during
installation than needed so that they have the possibility to load
other code parts that use these permissions later on. Permission
requests by malware have also increased from an average
of 11.46 (10.19) in 2010 to 15.33 (13.93) in 2014, with the
average number of used permissions increasing only from 5.51
to 5.86. The number of requested permissions for goodware has
increased from 3.74 (3.58) in 2010 to 9.38 (8.45) in 2014, while
the number of used permissions also increased from 3.13 to 5.62.
For individual samples, the permission usage ratio has declined
for both goodware and malware, however, more significantly
for goodware: samples in this category from 2014 only use
13.38% of requested permissions in their code – a possible
side effect of the increased use of dynamic code loading (see
Section IV-B4). Figure 6 illustrates this development.

Table III shows an overview of the most frequently requested
permissions for malware and goodware. While the most
commonly requested permissions for both malware and goodware
are related to accessing the Internet, checking the network
connectivity and reading device specific identifiers from the
phone state, the majority of malware samples also requests SMS-
related permissions. Furthermore, the possibility to manipulate
shortcuts on the home screen can be used for phishing attacks
and is frequently requested by malware as well. Another critical
permission requested by malware is SYSTEM_ALERT_WINDOW,
which allows an app to show windows on top of all other apps,
overlapping them completely. It is used to display aggressive
ads and by ransomware that draws a window over all other apps
to keep the user from accessing any other phone functionality.

It is also important to note that not only individual but also
combinations of permissions can be security-critical: while the
INSTALL_SHORTCUT permission, which is requested by more
than half of the malicious apps, is classified as dangerous, the
same functionality can be achieved through the combination



Fig. 6: Goodware (GW) and malware (MW) apps request an
increasing number of permissions (overall as well as from the
subset of permissions we statically extract), but permission
usage stays constant – a side effect of the increasing use of
dynamic code loading and obfuscation.

of the normal READ_SETTINGS and WRITE_SETTINGS
permissions [67]. This is common practice amongst malware,
with 10.88% of malware samples requesting both permissions,
while only 0.20% of goodware samples do so.

During our evaluation of dynamic analysis features (see
Section IV-B), we observed samples attempting to send SMS,
connect to the Internet or accessing the SD card, without having
the appropriate permissions – actions that will be prohibited by
the Android OS. One explanation, besides a simple oversight,
is developers mistyping the intended permission in some cases,
for example as andorid.permission.*.

2) Application Names: The package name is the official iden-
tifier of an app, i.e., no two apps on a given device can share the
same package name. Some markets, such as Google Play, also use
it as a unique reference, but developers are not restricted from cre-
ating an app with an already existing package name. For malware
authors reusing the package name of a legitimate app is also a
way to masquerade as a benign app. Consequently, malware sam-
ples are far more likely to reuse package names than goodware
samples: while 73.78% of goodware package names are unique,
the same holds true for only 25.72% of malware’s package names.
Note, this number is likely to be slightly biased by submissions
from AndRadar that explicitly locates apps in markets based on
their package name to model and analyze how they spread [41].

A total of 8.50% of malware samples share their package
name with legitimate apps from our goodware set – in
total 4,059 distinct package names, half of which are
currently available in the Google Play Store. Among the most
frequently repackaged apps are Armor for Android Antivirus
(com.armorforandroid.security, 387 samples), Steamy
Window (com.appspot.swisscodemonkeys.steam, 93
samples), Opera (com.opera.mini.android, 68 samples),
and Flappy Bird (com.dotgears.flappybird, 23 samples)
– besides the paid Armor Antivirus all apps exceed 5 million
downloads on the Google Play Store.

By far the most often shared package name, shared by
1,735 malicious apps with a single legitimate Google Play
app, is com.app.android, however, more likely due to
careless naming on the legitimate app’s developers side. In
general, authors of malicious apps tend to favor generic
names and reuse them between samples, com.software.app
and com.software.application being the most popular

ones with 9,256 and 8,321 unique samples respectively. Start-
ing in 2012, we observed malware authors adopting ran-
dom looking package names, such as ouepxayhr.efutel,
ovbknnfm.xwscmnoi and rpyhwytfysl.uikbvktgwp. F-
Secure observed those package names being particularly popular
amongst the Android.Fakeinst family [32]. However, contrary to
the first impression, package names are not randomized on a per-
app basis, as evidenced by up to 3,234 unique samples per name.

3) Certificates: Certificates are a corner-stone in Android
security: each and every Android app has to be shipped with its
developer’s certificate and signed with his private key so that it
can be installed. Android uses the certificate to enforce update
integrity, i.e., it only allows updates signed with the same
key, and it uses it to allow resource sharing and permission
inheritance between apps from the same author [19].

Google does not impose any restrictions on the certificates
used to sign Android apps and over 99% of all certificates are
self-signed. We collected increasingly more apps signed by the
same key, for goodware and malware alike. While, in 2010,
19.21% of all keys were used to sign more than one goodware
app and 28.57% of the keys were used to sign more than one
malicious one, this increased to 40% for both goodware and
malware in 2014. This not only means that we are collecting
more apps by the same developers, but also that blacklisting
certificates used to sign malware is a viable option to keep
malware from spreading. Especially widely used are four test
keys distributed as part of the Android Open Source Project
(AOSP): 8.92% of malicious samples are signed with one of these
test key, however, the ratio significantly decreased from 65.29%
of malicious apps in 2010 to 7.29% in 2014. Although those
keys should not be used by legitimate apps, 2.26% of goodware
apps are signed with a publicly available test key – making them
vulnerable to attack: as we will show in the next section, if a user
has such an app installed, malware signed with the same test
key can potentially share permissions with the vulnerable app.

To our surprise we also found four samples, each labeled by
more than 11 AV scanners as part of the Android.Bgserv malware
family, that are signed with a valid Google certificate. These apps
with the package name com.android.vending.sectool.v1
are a malware removal tool by Google, mistakenly flagged by
malware by numerous AV vendors [62].

4) Application Interdependencies: The Android system as-
signs, by default, a unique user ID (UID) to each app and runs
it as that user in a separate process. Apps, however, can share
their UID with other apps by specifying a sharedUserId in
the manifest. This allows apps to share data, run in the same
process, and even inherit each other’s permissions [19], all under
the prerequisite that apps are signed with the same key. Clearly,
this feature also allows collusion amongst apps [48]: a malicious
payload could be spread across multiple innocent looking apps.
We saw this feature more commonly implemented in goodware
than in malware: 1.14% of apps share their UID while only 0.29%
of malicious apps do. This functionality becomes especially
security critical when combined with an exploit for the powerful
Master Key vulnerabilities (detailed in Section IV-A7). In
theory, attackers could inject their code into apps not requesting
any permissions at all but inheriting permissions from more
privileged apps through a shared UID. Apps can even try to gain
system privileges by exploiting an app signed with a platform
certificate and sharing the UID with android.uid.system.
Furthermore, with numerous apps being signed with the test
key from the AOSP, crafting a malicious app inheriting the
permissions from other apps is possible even without having to
utilize an exploit to circumvent the app signing process. In fact,
6.79% of benign and 17.57% of malicious samples that share a



UID are signed with a public test key. This becomes especially
critical when the Android OS itself is signed with a public
key: according to DroidRay [69], a recent security evaluation of
custom Android firmware, out of 250 firmware images, 56.80%
were signed with a key pair from the AOSP. In our dataset,
we identified 84 apps (4 of which were not detected by any
AV scanners, the remainder was labeled as Android.Fjcon) that
were capable of gaining system privileges through UID sharing
with android.uid.system. All samples were signed with the
same AOSP key pair used to generate the system signature for
134 (53.60%) of the firmware images evaluated by DroidRay.

5) Broadcast Receivers: Apps can register broadcast re-
ceivers for arbitrary custom events, however, we focus our
analysis on broadcast receivers listening for system events.
Broadcast receivers are by far more widely used in malicious
apps than in benign apps: 82.18% of all malware samples
register one or more broadcast receivers, while only 41.86% of
goodware sample use this feature. Table IV (in the Appendix)
lists the most frequently registered broadcast receivers for both
categories. Goodware mainly watches for notifications to update
their widgets, install referrers from the market and a user being
present, probably to suspend idle mode quickly whenever a user
unlocks the phone so that new data can be fetched and the
app’s status can be updated. Malware, on the other hand, often
registers itself as a service, which is running in the background,
and does not care for user input. More than half of all samples
listen for the BOOT_COMPLETED event, which triggers as soon
as the phone has booted the Android OS, and for the event that
is published upon receipt of incoming messages, both text-based
(SMS_RECEIVED) and data-based (DATA_SMS_RECEIVED).
However, we only saw listeners for data-based SMS in 2012 and
2013 with 24.43% and 10.41% of malware samples listening for
this event. We also see growing interest of malicious apps in the
CONNECTIVITY_CHANGE and AIRPLANE_MODE receivers since
2012 with a peak of 17.93% and 14.99% in 2013 respectively.
Furthermore, malicious apps started using Device Administrator
Privileges, which makes them harder to uninstall. The latter are
used by 11.94% of malware samples in 2014, which register
for the DEVICE_ADMIN_ENABLED event.

6) Third-Party Libraries: We checked all apps in our dataset
against a list of the 53 most popular advertisement (ad)
libraries according to AppBrain [4]. Fewer malicious (17.45%)
than benign (44.32%) apps come bundled with ad libraries,
presumably in part because we excluded samples labeled as
adware from our malware dataset. However, with ad fraud
being one way to monetize malicious app installs, malicious
samples include more ad libraries simultaneously: we saw a
maximum of 13 ad libraries in a single goodware app and 14 ad
libraries in a single malware app with 1.56 and 2.05 libraries on
average respectively. Table V (in the Appendix) lists the most
popular ad libraries for goodware and malware. Besides Google’s
AdMob being the most popular across both categories, albeit
with diverging percentages of over 35% in goodware to only
5.7% in malware, there is little overlap. With mobile malware
being particular prevalent in China [45], malicious apps mainly
include Chinese ad networks. Malware also favors aggressive
ad libraries, such as AirPush and Adwo, often classified by AV
scanners as adware and banned from Google’s Play Store [57] by
policy because they push advertisements to the notification bar.

Social networking libraries are used in 11.14% of goodware
apps (8.86% Facebook, 3.38% Twitter, 1.89% Google+), while
the number of malicious apps including such libraries is a negli-
gible 0.78% (0.66% Facebook, 0.13% Twitter, 0.09% Google+),
possibly indicating those libraries are shipped with the original
app that was targeted by repackaging to include malicious code.

The same as for social networking libraries holds true for
the use of billing libraries: 3.58% of goodware and only
0.53% of malware apps make use of billing services (3.08%
Google Billing, 0.57% Paypal, 0.17% Amazon Purchasing
and 0.03% Authorize.net in goodware; 0.35% Google Billing,
0.19% Paypal and 0.05% Amazon Purchasing in malware).
Billing services for in-app purchases are harder to monetize for
malware since payment providers usually have refund policies.

7) Master Key Vulnerabilities: In 2013 researchers reported
the Master Key vulnerability [35] in the Android app signing
process, which allows an app’s content, including its code,
to be modified without breaking the signature – essentially
allowing attackers to inject malicious code into any legitimate
applications without repackaging them. This vulnerability stems
from discrepancies between the handling of the ZIP file format
between the signature verification and installation process in
Android. Shortly after the original Master Key vulnerability was
published, two similar vulnerabilities were discovered [27,28].

Bug 8219321, the original Master Key vulnerability, is based
on the fact that the ZIP file format allows two files with the
same file name, thus allowing attackers to hide an additional
classes.dex file that is deployed by the installer instead
of the original one that is checked by the signature verifier.
We saw this vulnerability being exploited in 1,152 samples
(0.11%), all from 2013 and 2014, and only in malware, possibly
due to AV scanners automatically flagging apps as there is no
legitimate reason for this behavior.

Bug 9695860 stems from a signed unsigned integer mismatch
in the length of the extra field of the ZIP file header. In
addition to allowing attackers to inject an app with a malicious
classes.dex, the exploitation of this vulnerability also breaks
analysis tools utilizing the unpatched version of the Python
zipfile [12], such as Androguard in the default configuration.
We saw 4,553 samples (0.44%) triggering the Python bug.
However, we only found two samples with an extra field length
triggering an integer overflow and thus the vulnerability, one
of them being a proof of concept [9].

Bug 9950697 lies within the redundant storage of the length
of the file name in both the central directory of the ZIP file
as well as the local file header. Again this vulnerability allows
attackers to specify a file name large enough for the installer
to skip the original classes.dex file and install the injected
one. However, we only observed this bug being exploited in
447 (0.05%) of all samples (starting already in 2011 with the
majority of samples being from 2013), with 92 malware and
26 goodware samples respectively.

B. OBSERVATIONS FROM DYNAMIC ANALYSIS
In contrast to static analysis, dynamic analysis lets us monitor
an app’s behavior during runtime – including behavior caused by
dynamically loaded code. In addition, the obtained information
is more comprehensive and includes full paths of file system
accesses, called phone numbers, recipients and contents of SMS,
leaks of sensitive information, as well as usage of cryptographic
algorithms and a full profile of the app’s network behavior.

1) File Activity: Apps can both read and write the internal
storage as well as external storage from SD cards. Overall
72.49% of goodware and 95.99% of malware read files, and
83.11% of goodware and 94.70% of malware write to the
file system during dynamic analysis in ANDRUBIS. When
distinguishing file system access to the primary storage and
access to the secondary storage, i.e., the SD card, it becomes
apparent that SD card access is far more prevalent amongst
malware: 22.02% of malicious apps read and 27.82% write files
to the SD card, while only 2.91% of benign apps read and 6.69%



write to external storage. Starting in Android 3.2 (Honeycomb)
Google restricted third-party apps from accessing the SD card
by limiting the WRITE_EXTERNAL_STORAGE to the primary
storage and requiring the WRITE_MEDIA_STORAGE, which is
only granted to system apps, for write access to the SD card.
However, this change was largely ignored by OEM and custom
firmware developers [60]. In our dataset 93.08% of goodware
and 97.69% of malware apps that write to the SD card request
the first permission, while only 0.59% of goodware and 0.08%
request both. Static analysis completely failed to determine
the usage of the WRITE_EXTERNAL_STORAGE permission and
thus the write access to the SD card in any app. Furthermore,
despite Google’s policy to restrict write access to SD cards,
this behavior has been steadily increasing in goodware apps
from 2.89% in 2010 to 16.64% in 2014. Writing to SD storage
in malware has been a constant behavior in around 30% of
malware. This is likely to increase even more in the future with
new possibilities for monetization being explored: recently the
Cryptolocker family started encrypting files stored on the SD
card and demanding ransom for the decryption key [42].

2) Phone Activity: Concerning mobile-specific behavior,
only very few applications initiated phone calls during dynamic
analysis: 0.24% of goodware apps and only 0.04% of malware
apps. For both malware and goodware, 98% of those apps
requested the corresponding CALL_PHONE permission, however,
static analysis failed to determine any usage of this permission
from the apps’ source.

While the percentage of apps sending SMS in the goodware
dataset is as low as the percentage of apps initiating phone
calls (only 0.26%), we observed 15.00% of malicious apps
sending text messages. This comes as no surprise: sending SMS
to premium numbers is a popular monetization vector of mobile
malware [59]. Again, 98.57% (goodware) and 99.15% (malware)
of those apps requested the necessary SEND_SMS permission,
while static analysis revealed that 85.37% (goodware) and
81.79% (malware) of those apps actually use this permission in
their source code – again showing the value and importance of
dynamic analysis to uncover behavior from hidden or obfuscated
function calls. Phone numbers tend to be shorter for malware,
also indicating the use of premium numbers – goodware apps
send SMS to 410 unique numbers with an average length
of 7.18 digits, while the 1,943 distinct numbers malware
sends SMS to is only 4.26 digits on average. Furthermore, we
observed malware samples sending up to 120 SMS to premium
numbers during four minutes of dynamic analysis.

3) Data Leakage: Data leakage is significantly more prevalent
in malware than in goodware: overall, 14.28% of goodware apps
leak information over the network, while 42.53% of malicious
apps do so. When looking at the dataset as a whole, data leakage
to the network overall occurred in 38.79% of all apps and
significantly increased from 13.45% in 2010 to 49.78% in 2014.
Both goodware and malware leak device specific identifiers, such
as the International Mobile Station Equipment Identity (IMEI),
International Mobile Subscriber Identity (IMSI), Integrated
Circuit Card Identifier (ICCID) and the phone number. Goodware
mainly leaks the IMEI, while a quarter of malware leaks the
IMSI and almost 14% of malware leaks the user’s phone number.
Leakage of names and phone numbers from the user’s address
book is also more common amongst malware than it is amongst
benign apps. Instead, goodware mainly leaks the location, an
information source less commonly leaked by malware samples.
Few samples in general leak information on installed packages,
the contents of SMS, the call log, and browser bookmarks.
Table VI (in the Appendix) summarizes the information sources
most commonly leaked to the network by goodware and malware.

Data leakage via SMS occurred only in 0.04% of goodware
and in 0.72% of malware samples. This number, however, has
increased over the past years, with 1.87% of malware samples
leaking identifiers such as the IMSI, IMEI, ICCID and the
phone number, but also forwarding incoming SMS and the call
log via SMS in 2014.

4) Dynamically Loaded Code: Android apps can load code
at runtime to dynamically extend their functionality. However,
this technique comes with severe security implications. While
dynamic code loading is popular for legitimate reasons, such
as loading external add-on code, shared library code from
frameworks, or dynamically updating code during beta and/or
A/B testing, it is especially interesting for malware. Since apps
are typically inspected only once, either by an app market
or by an AV scanner at installation time, malicious apps can
download and load their malicious payload later at runtime to
evade detection. Furthermore, the unsafe use of code loading
techniques can also make legitimate apps vulnerable to code
injection techniques, as shown by Poeplau et al. [54].

DEX Classes. One possibility to dynamically extend an app’s
functionality is to load modules at the Dalvik VM level through
the DEX class loader. We observed this behavior for 2.97% of
goodware and for 4.46% of malware apps, with a significant
increase over the past two years. Static analysis successfully
identifies the invocation of the DexClassLoader in 98.88%
of goodware and 97.20% of malware respectively. On average,
goodware loads 1.28 and malware loads 1.59 DEX classes. The
maximum of different classes loaded is 37 for the Metasploit
payload, 25 classes for samples from the Android.SmsSpy
family and 9 classes for goodware in general.

Native Libraries. Overall, both goodware and malware apps
load native libraries in equal proportions: we observed 8.60%
and 8.50% of all benign and malicious apps loading native code
during dynamic analysis, with a clear upward trend especially
amongst goodware. The sources for the loaded native code
and their impact differ: at a finer granularity, we distinguish
between the number of system native libraries loaded and
custom, non-system, libraries loaded. Custom libraries are far
more dangerous than those provided by the Android system
itself. The reason for system library usage is simple: games and
graphically demanding apps make use of hardware-accelerated
technologies found in modern graphics cards, like OpenGL or
video decoding, for both performance reasons and increased
battery life. Custom libraries, however, tend to be used by
malware for a number of nefarious purposes, including the
elevation of privileges through root exploits.

Goodware apps load 52.47% and 52.26% code from the system
and the data directory respectively, contrary, only 19.46% of
malware samples load native system libraries, while 84.19% load
their own bundled native code or fetch it from remote servers.
While for malware the percentage of system libraries loaded
decreased from 2010 to 2014 by 13 percentage points and the
usage of custom libraries increased by 20 percentage points, this
trend is more severe for goodware: in 2010, 74.11% of goodware
apps loaded native code from the system and only 29.57%
loaded custom code; in 2014, 30.95% of apps loaded code from
the system and 73.37% loaded it from the data directory.

Static analysis was far less successful in identifying native
code loading compared to DEX class loading and only identified
the loadLibary() call in 54.40% of goodware and 83.25%
of malware. These numbers correspond to the number of apps
shipping with unencrypted ELF libraries that can be identified
based on their file signature: 54.29% in the case of goodware
and 85.23% in the case of malware.



2010 2011 2012 2013 2014

5

10

15

20

25

30

P
e
rc

e
n
ta

g
e
 o

f 
A

p
p
s

DEX All
DEX GW
DEX MW
Native All
Native GW
Native MW

Fig. 7: Increasing use of DEX and native code loading overall,
and in goodware (GW) and malware (MW).

Dynamic code loading significantly increased during our
observation period, especially for goodware over the past
two years, as shown in Figure 7: in 2014, 29.29% of benign
apps loaded Dalvik and 20.82% native code, while 13.15%
of malicious apps loaded Dalvik and 12.57% native code.
Furthermore, loading native libraries and DEX classes is not an
either-or decision: 1.25% of all malware (5.43% in just 2014)
and 0.45% of all goodware (4.92% in 2014) combine those
techniques to load both native and Dalvik code.

5) Cryptographic API Usage: Another interesting case study
is the use of cryptographic protocols. During dynamic analysis,
we observed the usage of the Java crypto API in 5.63% of mali-
cious apps, in contrast to only 1.10% of goodware apps. Interest-
ingly, for those apps we could statically determine the use of cryp-
tography in 99.21% of cases for goodware, but for only 43.24%
of malware – either due to this part of the code being obfuscated
and loaded dynamically at runtime. Overall, static analysis
revealed the use of javax/crypto/* in 44.83% of goodware
apps, increasing from 11.12% in 2010 to 79.18% in 2014. For
malware, we did not see such a development with the Java crypto
API being used by only 29.84% overall, likely due to malware
shipping their own implementations in order to evade detection.

The most popular algorithms observed during dynamic
analysis of goodware are AES (66.75%), PBEwithMD5andDES
(15.03%), DES (11.98%), and RSA (5.08%). Malware, on the
other hand, mainly used AES (74.82%), Blowfish (14.31%),
DES (8.78%), and RSA (1.20%). We also observed a trend
toward stronger cryptographic algorithms in malware: while
DES was the predominantly used algorithm amongst malware
in 2010 (98.44%), its usage declined significantly to 1.53%
in 2013. Instead, in 2012 malware authors started adopting
the stronger Blowfish algorithm, which is now being used by
31.58% of all malware apps from 2013, while we have not
seen a single goodware app using Blowfish.

6) Network Activity: We observed network traffic in
goodware and malware apps alike – 71.11% of goodware
and 80.36% of malware, with almost 99% of those samples
requesting but only 70.97% of benign and 61.43% of malicious
samples using the INTERNET permission according to static
analysis. This numbers decreased for malware in 2014 to only
94.40% requesting and 58.84% using the permission, indicating
malware circumventing the permission system by performing
network activity through other apps installed on the device,
such as the browser, for example.

Almost all apps that use the Internet query domain names:
99.91% of malware and 97.34% of goodware perform DNS
queries, but while one third (32.33%) of the queries by
malicious samples fail and result in an invalid (NX) domain,
only 10% of queries from goodware samples do.

UDP traffic is almost limited to DNS, with only a few
samples using NTP. However, 55.33% of malware and 23.62%
of goodware also establish TCP connections. This number
increased for malware from 27.69% in 2010 to 58.65% in
2013, and decreased to 45.84% in 2014; for goodware it
monotonically increased from 12.81% in 2010 to 43.50%
in 2014. The most commonly observed network activity for
malware occurred on port 443 (HTTPS, 44.09% of samples),
port 80 (HTTP, 15.52%), and port 5224 (XMPP/Google Talk),
8245 (DynDNS), and 9001 (Tor) with less than 0.2% of samples
each. For goodware we observed port 443 (HTTPS, 15.58%),
port 80 (HTTP, 7.31%), and port 1130 (CASP, 0.46%).

Other protocols were hardly ever used: we only observed 77
apps in our whole dataset establishing FTP connections and 14
samples using IRC. We saw, however, 352 samples from 2013
and 2014 establishing SMTP connections and sending emails.
The majority of those samples are classified by AV scanners
as malware and they leak sensitive information such as the
contents of the address book and incoming SMS via email to
addresses from Chinese freemail providers, such as NetEase
(163.com, 126.com) and Tencent (qq.com).

7) Cross-Platform Malware: In 2013 Android malware
started to download a malicious Windows payload (Back-
door.MSIL.Ssucl) and saving it together with an autorun.inf
file in the root directory of the phone’s SD card, hoping it
would be automatically executed on Windows computers once
the phone was connected to the PC via USB [26]. We only saw
this behavior in 11 apps overall, nine of which were different
versions of the goodware samples iSyncr and RealPlayer that
placed their Windows installer together with autorun.inf on
the SD card. Only 19 goodware samples embedded executables.
The only malicious samples we saw exhibiting this behavior were
from the Android.UsbCleaver [31] family. Overall, we detected
447 malware samples with a total of 27 different embedded
executables that are flagged by at least one AV scanner.

There have been reports of Windows malware attempting to
infect Android devices, and even installing the Android Debug
Bridge (ADB) to do so [43]. We have only seen 119 Windows
samples in ANUBIS attempting to drop APK files, 16 of which
also tried to access the ADB (currently not installed in our
Windows environment). The majority of those files, however,
failed to download completely or seem to belong to rooting
utilities. VirusTotal has labels for 56 out of the 99 dropped
APKs, with 33 not being detected by any AV scanners, 20
detected, as root exploits and the remaining three belonging
to Android.AndroRat and Android.FakeAngry.

V. RELATED WORK
For Windows malware, Bayer et al. [20] performed a similar anal-
ysis to ours on a dataset of 900,000 Windows samples ANUBIS
received within its first two years of operation. Here, however,
we focus on related work on the Android malware landscape.

Android security and the detection and characterization of
Android malware in particular has been an extremely active field
of research in the past years. Felt et al. [33] analyzed a total of 46
iOS, Symbian and Android malware samples collected between
2009 and 2011 to provide one of the first surveys on mobile
malware and their author’s incentives. The Android Malware
Genome Project [72] was a further attempt to systematize
Android malware behavior and provided a publicly available
dataset used in many following evaluations. The dataset, however,
is now showing its age: the samples being collected between
2010 and 2011 behave significantly different than apps from
2012 to 2014, as we have shown in our evaluation (Section IV).
Another available malware dataset is the one used by Drebin [17]
for classifying Android malware. This dataset also includes the



Genome Project and the most recent samples were collected in
2012. Further studies on malware behavior mainly focused on
the practice of repackaging and the pervasiveness of repackaged
apps in alternative app stores [70,71].

TaintDroid [30] was the first work to propose taint tracking for
monitoring data flow dependencies and data leakage in Android
apps and is now at the core of many sandboxes, such as ours, to
track data leaks. DroidScope [66] is a dynamic analysis system
solely based on VMI. While this approach has advantages, such
as whole-system taint analysis, the delicate reconstruction of
Java objects and the like from raw memory regions requires
substantial adaption effort with each Android OS update.

SmartDroid [68] and AppsPlayground [55] aim at improving
the stimulation of apps during dynamic analysis. They try to
drive the app along paths that are likely to reveal interesting
behavior through targeted stimulation of UI elements. Their
approaches can be seen as intelligent enhancements of the
Application Exerciser Monkey and our custom stimulation
of activity screens. They are largely orthogonal to our work,
which focuses on stimulating broadcast receivers, services and
common events, instead of UI elements.

Concerning systems for the large-scale dynamic analysis of
Android applications, Bläsing et al. [24] proposed AASandbox,
the first dynamic analysis platform for Android based on system
call monitoring. ANANAS [29], on the other hand, is a dynamic
analysis framework focusing on extensibility through modules.
DroidRanger [73] pre-filters applications based on a manually
created permission-fingerprint before subjecting them to dynamic
analysis. In contrast to this approach, we analyzed every app,
yielding full behavioral profiles to base our evaluation on. Further-
more, DroidRanger performs monitoring through a kernel module
instead of VMI and focuses only on system calls used by existing
root exploits. Finally, DroidRanger does not employ stimulation
techniques. None of the above tools are publicly available.

Dynamic analysis systems that are publicly available are
CopperDroid [7,56], Tracedroid [14,63], SandDroid [13], and
Mobile-Sandbox [11,58]. CopperDroid performs out-of-the-box
system call monitoring through VMI and reconstructs Dalvik
behavior by monitoring Binder communication. Tracedroid
generates complete method traces by extending the Dalvik
VM profiler and was subsequently integrated into ANDRUBIS,
but it is also available as a standalone service. SandDroid
performs monitoring of the Dalvik VM, but does not allow
any network connections to the outside and therefore misses
behavior in apps checking for Internet connectivity [64]. Mobile-
Sandbox monitors native code through ltrace in addition to
instrumenting the Dalvik VM. However, both SandDroid and
Mobile-Sandbox seem to be unable to cope with their submission
load: SandDroid has only analyzed around 25,000 samples to date
and samples we submitted have been stuck in the input queue for
almost nine months, while Mobile-Sandbox reports a backlog of
over 300,000 samples with no samples seemingly being analyzed.
We emphasize that, to the best of our knowledge, ANDRUBIS is
the only dynamic analysis sandbox operating on a large-scale,
providing a thorough analysis on both Dalvik and system level,
and typically returning a report in ten minutes or less.

VI. LIMITATIONS
One limitation of any dynamic analysis approach is evasion.
As long as a sandbox is not capable of perfectly emulating a
system, a possibility to detect it exists. Petsas et al. [53] and
Vidas et al. [64] recently explored the possibility to fingerprint
Android sandboxes, and found that all, including ours, are
susceptible to evasion. Sandbox detection techniques range from
static characteristics of the specific Android OS installation to
information from sensors, to the detection of the underlying

virtualization technology. One proof of concept [49] is able to
detect any QEMU-based environment based on binary translation:
QEMU (and other emulators) usually take a basic block, translate
it, and execute the whole resulting basic block on the host
machine. Unfortunately, this property allows for an easy detection
of emulated code, since the basic block cannot be interrupted
by the guest operating system’s scheduler. As a countermeasure,
we enabled QEMU single-step mode, which makes ANDRUBIS
undetectable by this evasion technique. However, this mode
introduces an analysis overhead of 29% compared to 7% with
Dalvik monitoring and 18% with QEMU VMI [65]. Generally,
dealing with analysis evasion is a never-ending arms race
between security researchers and malware authors.

A further limitation of dynamic analysis is code coverage.
While we try to increase behavior seen during analysis through
various stimulation techniques, a more intelligent user interface
stimulation than the random input stream by the Android
Exerciser Monkey could provide more complex and user-like
input and, in turn, trigger much more behavior from the apps
under analysis.

Currently public submissions to ANDRUBIS are limited to
a file size of 8MB. This limit, however, is simply a limitation
of our web interface and not a fundamental limitation of our
analysis. We are currently evaluating to increase this limit,
while keeping storage requirements at an acceptable level
without having to discard apps after analysis.

Finally, a limitation of any analysis system allowing submis-
sions from anonymous sources is the lack of metadata and ground
truth. We have no indication when and where samples were found
or how widespread they are in the wild. We tried to mitigate this
in part by collecting metadata from markets with AndRadar [41].
Lacking ground truth, we have to rely on AV signatures to
classify our dataset in goodware and malware, but we are ex-
perimenting with machine-learning approaches to automatically
classify samples with higher accuracy than related work.

VII. CONCLUSION
In this paper we presented ANDRUBIS, a fully automated
large-scale analysis system for Android apps that combines static
analysis with dynamic analysis on both Dalvik VM and system
level. ANDRUBIS accepts public submissions through a web
interface and a mobile app and is currently capable of analyzing
around 3,500 new samples per day. With ANDRUBIS, we provide
malware analysts with the means to thoroughly analyze Android
apps. Furthermore, we provide researchers with a solid platform
to build post-processing methods upon based on an app’s
static features and dynamic behavior. For example, leveraging
machine-learning approaches one can use our analysis results
to tackle the problem of judging whether a previously unseen
app is malware significantly more accurate than prior work.

ANDRUBIS has analyzed over 1,000,000 Android apps to
date. On an evaluation of this dataset spanning samples from
four years, we showed changes in the malware threat landscape
and trends amongst goodware developers. Dynamic code
loading, previously used as an indicator for malicious behavior,
is especially gaining popularity amongst goodware, and, in turn,
loses significant information value when distinguishing between
benign and malicious apps. Due to this development, static
analysis tools alone are increasingly unable to completely capture
an app’s behavior, making dynamic analysis indispensable for
a comprehensive analysis for a large number of apps.

In future work, we plan to explore the network behavior of An-
droid malware further to identify C&C communication patterns
and shared infrastructures with Windows malware. Furthermore,
we are exploring the option of releasing a comprehensive mal-
ware dataset, once we sorted out legal and confidentiality issues.



ACKNOWLEDGMENTS

We would like to thank VirusTotal for the service they provided
for our evaluation. The research leading to these results has
received funding from the European Union Seventh Framework
Programme under grant agreement n. 257007 (SysSec) and from
the FFG – Austrian Research Promotion under grant COMET K1.

This work also has been carried out within the scope of
u’smile, the Josef Ressel Center for User-Friendly Secure
Mobile Environments. We gratefully acknowledge funding and
support by the Christian Doppler Gesellschaft, A1 Telekom
Austria AG, Drei-Banken-EDV GmbH, LG Nexera Business
Solutions AG, and NXP Semiconductors Austria GmbH.

REFERENCES
[1] “Android Version history by API level,” http://en.wikipedia.org/wiki/

Android version history#Version history by API level.
[2] “Andrubis Submission App,” https://play.google.com/store/apps/details?

id=org.iseclab.andrubis.
[3] “Anubis,” http://anubis.iseclab.org.
[4] “AppBrain Stats: Android Ad networks,” http://www.appbrain.com/stats/

libraries/ad.
[5] “AppBrain Stats: Number of Android applications,” http:

//www.appbrain.com/stats/number-of-android-apps.
[6] “Contagio,” http://contagiominidump.blogspot.com.
[7] “CopperDroid,” http://copperdroid.isg.rhul.ac.uk.
[8] “ForeSafe Mobile Security,” http://www.foresafe.com.
[9] “Fuzion24/Zip File Arbitrage: Exploit for Android Zip bugs:

8219321, 9695860, and 9950697,” https://github.com/Fuzion24/
AndroidZipArbitrage.

[10] “Joe Sandbox Mobile,” http://www.joesecurity.org/joe-sandbox-mobile.
[11] “Mobile Sandbox,” http://mobilesandbox.org.
[12] “Python Bug Tracker: Issue 14315,” http://bugs.python.org/issue14315.
[13] “SandDroid,” http://sanddroid.xjtu.edu.cn.
[14] “Tracedroid,” http://tracedroid.few.vu.nl.
[15] “VirusTotal,” http://www.virustotal.com.
[16] “VisualThreat,” http://www.visualthreat.com.
[17] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck,

“Drebin: Efficient and Explainable Detection of Android Malware in
Your Pocket,” in Proceedings of the 20th Annual Network & Distributed
System Security Symposium (NDSS), 2014.

[18] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “PScout: Analyzing
the Android Permission Specification,” in Proceedings of the 19th ACM
Conference on Computer and Communications Security (CCS), 2012.

[19] D. Barrera, J. Clark, D. McCarney, and P. C. van Oorschot, “Understanding
and Improving App Installation Security Mechanisms Through Empirical
Analysis of Android,” in Proceedings of the 2nd ACM CCS Workshop on
Security and Privacy in Smartphones and Mobile Devices (SPSM), 2012.

[20] U. Bayer, I. Habibi, D. Balzarotti, E. Kirda, and C. Kruegel, “A View
on Current Malware Behaviors,” in Proceedings of the 2Nd USENIX
Conference on Large-scale Exploits and Emergent Threats (LEET), 2009.

[21] U. Bayer, C. Kruegel, and E. Kirda, “TTAnalyze: A Tool for Analyzing
Malware,” in Proceedings of the 15th European Institute for Computer
Antivirus Research (EICAR) Annual Conference, 2006.

[22] U. Bayer, P. Milani Comparetti, C. Hlauscheck, C. Kruegel, and E. Kirda,
“Scalable, Behavior-Based Malware Clustering,” in Proceedings of the 16th
Annual Network & Distributed System Security Symposium (NDSS), 2009.

[23] M. Bierma, E. Gustafson, J. Erickson, D. Fritz, and Y. R. Choe,
“Andlantis: Large-scale Android Dynamic Analysis,” in Proceedings of
the 3rd IEEE Mobile Security Technologies Workshop (MoST), 2014.

[24] T. Bläsing, L. Batyuk, A.-D. Schmidt, S. Camtepe, and S. Albayrak, “An
Android Application Sandbox System for Suspicious Software Detection,”
in Proceedings of the 5th International Conference on Malicious and
Unwanted Software (MALWARE), 2010.

[25] L. Cavallaro, P. Saxena, and R. Sekar, “Anti-Taint-Analysis: Practical
Evasion Techniques Against Information Flow Based Malware Defense,”
Secure Systems Lab at Stony Brook University, Tech. Rep., 2007.

[26] V. Chebyshev, “Mobile attacks!” http://www.securelist.com/en/blog/805/
Mobile attacks, February 2013.

[27] P. Ducklin, “Anatomy of a file format problem - yet another code
verification bypass in Android,” http://nakedsecurity.sophos.com/2013/
11/06/anatomy-of-a-file-format-problem-yet-another-code-verification-
bypass-in-android, November 2013.

[28] ——, “Anatomy of another Android hole - Chinese researchers claim
new code verification bypass,” http://nakedsecurity.sophos.com/2013/07/
17/anatomy-of-another-android-hole-chinese-researchers-claim-new-
code-verification-bypass, July 2013.

[29] T. Eder, M. Rodler, D. Vymazal, and M. Zeilinger, “ANANAS - A
Framework For Analyzing Android Applications,” in Proceedings
on the 1st International Workshop on Emerging Cyberthreats and
Countermeasures (ECTCM), 2013.

[30] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. N. Sheth, “TaintDroid: An Information-Flow Tracking System for
Realtime Privacy Monitoring on Smartphones,” in Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation
(OSDI), 2010.

[31] F-Secure, “Android Hack-Tool Steals PC Info,” http://www.f-
secure.com/weblog/archives/00002573.html, July 2013.

[32] ——, “Threat Report H2 2013,” http://www.f-secure.com/static/doc/labs
global/Research/Threat Report H2 2013.pdf, March 2014.

[33] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A Survey of
Mobile Malware in the Wild,” in Proceedings of the 1st ACM Workshop on
Security and Privacy in Smartphones and Mobile Devices (SPSM), 2011.

[34] A. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
Permissions Demystified,” in Proceedings of the 18th ACM Conference
on Computer and Communications Security (CCS), 2011.

[35] J. Forristal, “Android: One Root to Own Them All,” in Black Hat USA,
2013.

[36] J. Goebel, T. Holz, and C. Willems, “Measurement and Analysis
of Autonomous Spreading Malware in a University Environment,”
in Proceedings of the 4th International Conference on Detection of
Intrusions & Malware, and Vulnerability Assessment (DIMVA), 2007.

[37] Google, “Introducing ART,” https://source.android.com/devices/tech/
dalvik/art.html, 2014.

[38] IDC, “Android and iOS Continue to Dominate the Worldwide Smartphone
Market with Android Shipments Just Shy of 800 Million in 2013,” http:
//www.idc.com/getdoc.jsp?containerId=prUS24676414, February 2014.

[39] B. Irinco, “First Android Trojan in the Wild,” http://blog.trendmicro.com/
trendlabs-security-intelligence/first-android-trojan-in-the-wild, August
2010.

[40] C. Lever, M. Antonakakis, B. Reaves, P. Traynor, and W. Lee, “The
Core of the Matter: Analyzing Malicious Traffic in Cellular Carriers,” in
Proceedings of the 20th Annual Network & Distributed System Security
Symposium (NDSS), 2013.

[41] M. Lindorfer, S. Volanis, A. Sisto, M. Neugschwandtner,
E. Athanasopoulos, F. Maggi, C. Platzer, S. Zanero, and S. Ioannidis,
“AndRadar: fast discovery of android applications in alternative markets,”
in Proceedings of the 11th Conference on Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA), 2014.

[42] R. Lipovsky, “ESET Analyzes First Android File-Encrypting, TOR-
enabled Ransomware,” http://www.welivesecurity.com/2014/06/04/
simplocker, June 2014.

[43] F. Liu, “Windows Malware Attempts to Infect Android Devices,”
http://www.symantec.com/connect/blogs/windows-malware-attempts-
infect-android-devices, January 2014.

[44] H. Lockheimer, “Android and Security,” http://googlemobile.blogspot.
com/2012/02/android-and-security.html, February 2012.

[45] Lookout Mobile Security, “State of Mobile Security 2012,”
https://www.lookout.com/ downloads/lookout-state-of-mobile-
security-2012.pdf, 2012.

[46] A. Ludwig, E. Davis, and J. Larimer, “Android - Practical Security From
the Ground Up,” in Virus Bulletin Conference, 2013.

[47] F. Maggi, A. Valdi, and S. Zanero, “AndroTotal: A Flexible, Scalable
Toolbox and Service for Testing Mobile Malware Detectors,” in
Proceedings of the 3rd ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices (SPSM), 2013.

[48] C. Marforio, H. Ritzdorf, A. Francillon, and S. Capkun, “Analysis
of the Communication Between Colluding Applications on Modern
Smartphones,” in Proceedings of the 28th Annual Computer Security
Applications Conference (ACSAC), 2012.

[49] F. Matenaar and P. Schulz, “Detecting Android Sandboxes,”
http://www.dexlabs.org/blog/btdetect, August 2012.



[50] McAfee Labs, “McAfee Threats Report: Second Quarter 2013,”
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q2-
2013.pdf, August 2013.

[51] M. Neugschwandtner, M. Lindorfer, and C. Platzer, “A View To A Kill:
WebView Exploitation,” in Proceedings of the 6th USENIX Workshop
on Large-Scale Exploits and Emergent Threats (LEET), 2013.

[52] S. Neuner, V. van der Veen, M. Lindorfer, M. Huber, G. Merzdovnik,
M. Mulazzani, and E. Weippl, “Enter Sandbox: Android Sandbox
Comparison,” in Proceedings of the 3rd IEEE Mobile Security
Technologies Workshop (MoST), 2014.

[53] T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis, and
S. Ioannidis, “Rage Against the Virtual Machine: Hindering Dynamic
Analysis of Android Malware,” in Proceedings of the Seventh European
Workshop on System Security (EuroSec), 2014.

[54] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna,
“Execute This! Analyzing Unsafe and Malicious Dynamic Code Loading
in Android Applications,” in Proceedings of the 20th Annual Network
& Distributed System Security Symposium (NDSS), 2014.

[55] V. Rastogi, Y. Chen, and W. Enck, “AppsPlayground: Automatic Security
Analysis of Smartphone Applications,” in Proceedings of the 3rd ACM
Conference on Data and Application Security and Privacy (CODASPY),
2013.

[56] A. Reina, A. Fattori, and L. Cavallaro, “A System Call-Centric Analysis
and Stimulation Technique to Automatically Reconstruct Android
Malware Behaviors,” in Proceedings of the 6th European Workshop on
System Security (EuroSec), 2013.

[57] D. Ruddock, “Google Pushes Major Update To Play Developer Content
Policy, Kills Notification Bar Ads For Real This Time, And A Lot More,”
http://www.androidpolice.com/2013/08/23/teardown-google-pushes-
major-update-to-play-developer-content-policy-kills-notification-bar-
ads-for-real-this-time-and-a-lot-more/, September 2013.

[58] M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck, and J. Hoffmann,
“Mobile-sandbox: Having a Deeper Look into Android Applications,” in
Proceedings of the 28th Annual ACM Symposium on Applied Computing
(SAC), 2013.

[59] V. Svajcer, “Sophos Mobile Security Threat Report,”
http://www.sophos.com/en-us/medialibrary/PDFs/other/sophos-mobile-
security-threat-report.ashx, 2014.

[60] C. Toombs, “External Blues: Google Has Brought Big Changes To
SD Cards In KitKat, And Even Samsung Is Implementing Them,”
http://www.androidpolice.com/2014/02/17/external-blues-google-has-
brought-big-changes-to-sd-cards-in-kitkat-and-even-samsung-may-be-
implementing-them, February 2014.

[61] ——, “Updates To AOSP Confirm Dalvik Runtime Will Be
Removed From Android, ART Officially Takes Its Place,” http:
//www.androidpolice.com/2014/06/19/updates-aosp-confirm-dalvik-
runtime-will-removed-android-art-officially-takes-place, June 2014.

[62] H. T. T. Truong, E. Lagerspetz, P. Nurmi, A. J. Oliner, S. Tarkoma,
N. Asokan, and S. Bhattacharya, “The Company You Keep: Mobile
Malware Infection Rates and Inexpensive Risk Indicators,” in Proceedings
of the 23rd International Conference on World Wide Web (WWW), 2014.

[63] V. van der Veen, “Dynamic Analysis of Android Malware,” Internet &
Web Technology Master thesis, VU University Amsterdam, 2013.

[64] T. Vidas and N. Christin, “Evading Android Runtime Analysis via
Sandbox Detection,” in Proceedings of the 9th ACM Symposium on
Information, Computer and Communications Security (ASIACCS), 2014.

[65] L. Weichselbaum, M. Neugschwandtner, M. Lindorfer, Y. Fratantonio,
V. van der Veen, and C. Platzer, “Andrubis: Android Malware Under
The Magnifying Glass,” Vienna University of Technology, Tech. Rep.
TR-ISECLAB-0414-001, 2014.

[66] L. K. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the os
and dalvik semantic views for dynamic android malware analysis,” in
Proceedings of the 21st USENIX Security Symposium, 2012.

[67] Y. Zhang, H. Xue, and T. Wei, “Occupy Your Icons Silently on Android,”
http://www.fireeye.com/blog/technical/2014/04/occupy your icons
silently on android.html, April 2014.

[68] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, and W. Zou, “SmartDroid:
An Automatic System for Revealing UI-based Trigger Conditions in
Android Applications,” in Proceedings of the 2nd ACM CCS Workshop on
Security and Privacy in Smartphones and Mobile Devices (SPSM), 2012.

[69] M. Zheng, M. Sun, and J. C. Lui, “DroidRay: A Security Evaluation
System for Customized Android Firmwares,” in Proceedings of the
9th ACM Symposium on Information, Computer and Communications
Security (ASIACCS), 2014.

[70] W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou, “Fast, Scalable
Detection of ”Piggybacked” Mobile Applications,” in Proceedings of
the 3rd ACM Conference on Data and Application Security and Privacy
(CODASPY), 2013.

[71] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting Repackaged
Smartphone Applications in Third-Party Android Marketplaces,” in
Proceedings of the 2nd ACM Conference on Data and Application
Security and Privacy (CODASPY), 2012.

[72] Y. Zhou and X. Jiang, “Dissecting Android Malware: Characterization
and Evolution,” in Proceedings of the 33rd IEEE Symposium on Security
and Privacy, 2012.

[73] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, You, Get Off of My
Market: Detecting Malicious Apps in Official and Alternative Android
Markets,” in Proceedings of the 19th Annual Network & Distributed
System Security Symposium (NDSS), 2012.



APPENDIX

Fig. 8: Heatmap of API level adoption after Android SDK releases for goodware (left) and malware (right): goodware authors
adopt new API levels much faster than malware authors, who try to maximize the potential user base for their apps.

TABLE II: Sources for apps in our dataset: sample exchange feeds have a high proportion of malware, while the Google Play
Store and apps from torrents and direct downloads have low infection rates. Interestingly, not all samples from malware corpora
are detected by AV scanners.

Category Sample Exchange Google Play Alternative Markets VirusTotal Malware Corpora Torrents Direct Downloads Unknown

All 683,842 125,602 60,951 37,499 5,997 17,916 1,704 159,040
Goodware 5.2% 88.73% 18.15% 0.20% 0.04% 88.50% 96.36% 78.65%
Malware 55.3% 1.60% 27.51% 98.65% 97.87% 1.60% 1.59% 7.56%

TABLE III: Most frequently requested permissions in
goodware and malware by the percentage of apps in each set.

Goodware Malware

83.97% INTERNET 95.37% INTERNET
61.54% ACCESS NETWORK STATE 91.42% READ PHONE STATE
43.65% WRITE EXTERNAL STORAGE 82.79% WRITE EXTERNAL STORAGE
38.09% READ PHONE STATE 71.99% ACCESS NETWORK STATE
23.59% ACCESS COARSE LOCATION 69.91% SEND SMS
22.51% VIBRATE 60.67% RECEIVE SMS
21.56% ACCESS FINE LOCATION 55.66% INSTALL SHORTCUT
19.32% WAKE LOCK 51.40% WAKE LOCK
18.05% ACCESS WIFI STATE 48.73% READ SMS
12.11% READ CONTACTS 45.62% RECEIVE BOOT COMPLETED
11.83% RECEIVE BOOT COMPLETED 40.15% ACCESS WIFI STATE

8.30% CALL PHONE 32.92% WRITE SETTINGS
8.15% CAMERA 30.05% READ CONTACTS
7.66% GET TASKS 25.74% CALL PHONE
7.45% SEND SMS 24.70% ACCESS COARSE LOCATION
6.72% GET ACCOUNTS 24.30% ACCESS FINE LOCATION
6.31% WRITE SETTINGS 23.83% VIBRATE
6.11% WRITE CONTACTS 23.04% GET TASKS
5.02% SET WALLPAPER 20.15% WRITE SMS
4.96% CHANGE WIFI STATE 20.12% CHANGE WIFI STATE
4.57% INSTALL SHORTCUT 19.21% SYSTEM ALERT WINDOW
4.47% RECEIVE SMS 19.11% CHANGE NETWORK STATE
4.03% RECORD AUDIO 17.81% GET ACCOUNTS
4.00% READ CALENDAR 13.93% INSTALL PACKAGES
3.79% READ LOGS 13.23% UNINSTALL SHORTCUT

TABLE IV: Most frequently registered broadcast receivers in
goodware and malware by the percentage of apps in each set.

Goodware Malware

11.29% BOOT COMPLETED 56.32% BOOT COMPLETED
8.93% APPWIDGET UPDATE 41.73% SMS RECEIVED
8.74% INSTALL REFERRER 14.56% CONNECTIVITY CHANGE
6.74% SCREEN OFF 13.49% DATA SMS RECEIVED
6.69% USER PRESENT 11.95% AIRPLANE MODE
4.17% CONNECTIVITY CHANGE 10.18% PACKAGE ADDED
2.40% PACKAGE ADDED 4.24% NEW OUTGOING CALL
2.38% IN APP NOTIFY 2.66% USER PRESENT
2.25% SMS RECEIVED 2.14% BATTERY CHANGED
1.43% PHONE STATE 1.72% DEVICE ADMIN ENABLED
0.91% MEDIA BUTTON 1.60% INSTALL REFERRER
0.78% PACKAGE REMOVED 1.50% APPWIDGET UPDATE
0.70% SERVICE STATE 1.43% PHONE STATE
0.65% SCREEN ON 1.40% BATTERY CHANGED ACTION
0.64% MEDIA MOUNTED 1.03% PACKAGE REMOVED
0.61% NEW OUTGOING CALL 0.90% UNINSTALL SHORTCUT
0.60% BATTERY CHANGED 0.90% INSTALL SHORTCUT
0.47% PACKAGE REPLACED 0.90% SIG STR
0.40% DEVICE ADMIN ENABLED 0.88% ACTION POWER CONNECTED
0.36% DEVICE STORAGE LOW 0.70% SCREEN OFF
0.32% STATE CHANGE 0.61% PICK WIFI WORK
0.27% TIME SET 0.51% TIME SET
0.25% WAP PUSH RECEIVED 0.41% WAP PUSH RECEIVED
0.25% ACTION POWER CONNECTED 0.39% SCREEN ON
0.24% MEDIA UNMOUNTED 0.36% BATTERY LOW

TABLE V: Most popular advertisement libraries in goodware
and malware by the percentage of apps in each set.

Goodware Malware

36.76% AdMob (Google) 5.74% AdMob (Google)
5.61% Flurry 3.90% WAPS
4.00% Millenial Media 2.94% Kuogo
2.92% MobClix 2.92% domob
2.72% AdWhirl 2.67% Adwo
1.94% InMobi 2.02% AirPush
1.77% MobFox 1.97% YouMi
0.91% MoPub 1.43% Vpon
0.78% Adlantis 1.27% Wooboo
0.74% Admarvel 1.15% MobWIN
0.67% Smaato 0.91% Millenial Media
0.63% YouMi 0.84% Flurry

TABLE VI: Information most commonly leaked to the network
by goodware and malware by the percentage of apps in each set.

Goodware Malware

12.86% IMEI 39.68% IMEI
1.70% IMSI 25.88% IMSI
1.51% PHONE NUMBER 13.89% PHONE NUMBER
1.12% LOCATION 4.34% ICCID
1.12% LOCATION GPS 1.40% CONTACTS
0.60% ICCID 0.40% PACKAGE
0.08% PACKAGE 0.11% SMS
0.06% CONTACTS 0.11% CALL LOG
0.05% SMS 0.10% LOCATION
0.02% CALL LOG 0.10% LOCATION GPS
0.01% BROWSER 0.07% BROWSER
0.01% CALENDAR 0.00% TAINT CAMERA


